Abstract
A simple but efficient algorithm has been developed for computer analysis of eye tracking movements. The program separates smooth pursuit and saccadic eye movements. Separation of the two components is achieved using a twostep process of saccade detection. First, an AR model of the velocity of the smooth component is identified and used to determine a Kalman filter. Secondly the innovation sequence generated by this filter allows saccade detection. The precise beginning and end of each saccade are found using a Hinkley algorithm. Examples are given of analysis procedure for eye tracking of a random moving target. The method proved to be highly reliable and could be easily extended to other eye movements such as nystagmus.
Similar content being viewed by others
References
Allum, J. H. J., Tole, J. R. andWeiss, A. D. (1975) MITNYS-II a digital program for on-line analysis of nystagmus.IEEE Trans.,BME-22, 196–202.
Bach, M., Bouis, D. andFisher, B. (1983) An accurate and linear oculometer.J. Neuro-sciences,9, 9–14.
Bahill, A. T., Iandolo, M. J. andTroost, B. T. (1980) Smooth pursuit eye movements in response to unpredictable target waveforms.Vision Res.,20, 923–931.
Bahill, A. T., Brockenbrough, A. andTroost, B. T. (1981) Variability and development of a normative data base for saccadic eye movements,Invest. Ophthalmol. Vis. Sci,21, 116–125.
Baland, J. F., Godaux, E. R. andCheron, G. A. (1987) Algorithms for the analysis of the nystagmic eye movements induced by sinusoidal head rotations.IEEE Trans.,BME-34, 811–816.
Balor, R. W., Langhoffer, L., Honrubia, V. andYee, R. D. (1980) On-line analysis of eye movements using a digital computer.Aviat. Space Environ. Med.,51, 563–567.
Barnes, G. R. (1982) A procedure for the analysis of nystagmus and other eye movement.,53, 676–682.
Bartlett, M. S., (1984) On the theoretical specification of sampling properties of autocorrelated time series,J. Royal Statistical Society, B8-27.
Box, G. E. P. andJenkins, G. M. (1976)Time series analysis: forecasting and control. Holden Day, San Francisco.
Eykhoff, P. (1974)System identification. North-Holland, Amsterdam.
Gauthier, G. M. andHofferer, J. M. (1976) Eye tracking of self-moved target in the absence of vision.Exp. Brain Res.,26, 121–139.
Gauthier, G. M., Vercher, J. L., Mussa-Ivaldi, F. andMarchetti, E. (1988) Oculo-manual tracking of visual targets: control learning, coordination control and coordination model.,73, 127–137.
Hinkley, D. V. (1971) Inference about the change point from cumulative sum-tests.Biometrika,58, 509–523.
Ljung, L. (1987)System identification: theory for the user. Prentice-Hall, Englewood Cliffs.
Matsuoka, K. andHarato, H. (1983) Detection of rapid phases of eye movements using third order derivatives,Japanese J. Ergonomics,19, 147–153.
Mehra, R. K. andPeschon, J. (1971) An innovations approach to fault detection and diagnosis in dynamic systems,Automatic,7, 637–640.
Stark, L., Wossius, G. andYoung, L. R. (1962) Predictive control of eye tracking movements.IRE Trans. Human Factors Electronics,3, 52–57.
Willsky, A.S. andJones, H. L. (1974) A generalized likelihood ratio approach to state estimation in linear systems subject to abrupt changes. Proc. IEEE Conf. Decision Contr., Phoenix Arizona, 846–853.
Willsky, A. S. (1976) A survey of design methods for failure detection in dynamic systems,Automatica,12, 601–611.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sauter, D., Martin, B.J., Di Renzo, N. et al. Analysis of eye tracking movements using innovations generated by a Kalman filter. Med. Biol. Eng. Comput. 29, 63–69 (1991). https://doi.org/10.1007/BF02446297
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02446297