Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Analysis of eye tracking movements using innovations generated by a Kalman filter

  • Physiological Measurement
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A simple but efficient algorithm has been developed for computer analysis of eye tracking movements. The program separates smooth pursuit and saccadic eye movements. Separation of the two components is achieved using a twostep process of saccade detection. First, an AR model of the velocity of the smooth component is identified and used to determine a Kalman filter. Secondly the innovation sequence generated by this filter allows saccade detection. The precise beginning and end of each saccade are found using a Hinkley algorithm. Examples are given of analysis procedure for eye tracking of a random moving target. The method proved to be highly reliable and could be easily extended to other eye movements such as nystagmus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allum, J. H. J., Tole, J. R. andWeiss, A. D. (1975) MITNYS-II a digital program for on-line analysis of nystagmus.IEEE Trans.,BME-22, 196–202.

    Google Scholar 

  • Bach, M., Bouis, D. andFisher, B. (1983) An accurate and linear oculometer.J. Neuro-sciences,9, 9–14.

    Google Scholar 

  • Bahill, A. T., Iandolo, M. J. andTroost, B. T. (1980) Smooth pursuit eye movements in response to unpredictable target waveforms.Vision Res.,20, 923–931.

    Article  Google Scholar 

  • Bahill, A. T., Brockenbrough, A. andTroost, B. T. (1981) Variability and development of a normative data base for saccadic eye movements,Invest. Ophthalmol. Vis. Sci,21, 116–125.

    Google Scholar 

  • Baland, J. F., Godaux, E. R. andCheron, G. A. (1987) Algorithms for the analysis of the nystagmic eye movements induced by sinusoidal head rotations.IEEE Trans.,BME-34, 811–816.

    Google Scholar 

  • Balor, R. W., Langhoffer, L., Honrubia, V. andYee, R. D. (1980) On-line analysis of eye movements using a digital computer.Aviat. Space Environ. Med.,51, 563–567.

    Google Scholar 

  • Barnes, G. R. (1982) A procedure for the analysis of nystagmus and other eye movement.,53, 676–682.

    Google Scholar 

  • Bartlett, M. S., (1984) On the theoretical specification of sampling properties of autocorrelated time series,J. Royal Statistical Society, B8-27.

  • Box, G. E. P. andJenkins, G. M. (1976)Time series analysis: forecasting and control. Holden Day, San Francisco.

    MATH  Google Scholar 

  • Eykhoff, P. (1974)System identification. North-Holland, Amsterdam.

    Google Scholar 

  • Gauthier, G. M. andHofferer, J. M. (1976) Eye tracking of self-moved target in the absence of vision.Exp. Brain Res.,26, 121–139.

    Article  Google Scholar 

  • Gauthier, G. M., Vercher, J. L., Mussa-Ivaldi, F. andMarchetti, E. (1988) Oculo-manual tracking of visual targets: control learning, coordination control and coordination model.,73, 127–137.

    Article  Google Scholar 

  • Hinkley, D. V. (1971) Inference about the change point from cumulative sum-tests.Biometrika,58, 509–523.

    Article  MATH  MathSciNet  Google Scholar 

  • Ljung, L. (1987)System identification: theory for the user. Prentice-Hall, Englewood Cliffs.

    MATH  Google Scholar 

  • Matsuoka, K. andHarato, H. (1983) Detection of rapid phases of eye movements using third order derivatives,Japanese J. Ergonomics,19, 147–153.

    Google Scholar 

  • Mehra, R. K. andPeschon, J. (1971) An innovations approach to fault detection and diagnosis in dynamic systems,Automatic,7, 637–640.

    Article  Google Scholar 

  • Stark, L., Wossius, G. andYoung, L. R. (1962) Predictive control of eye tracking movements.IRE Trans. Human Factors Electronics,3, 52–57.

    Article  Google Scholar 

  • Willsky, A.S. andJones, H. L. (1974) A generalized likelihood ratio approach to state estimation in linear systems subject to abrupt changes. Proc. IEEE Conf. Decision Contr., Phoenix Arizona, 846–853.

  • Willsky, A. S. (1976) A survey of design methods for failure detection in dynamic systems,Automatica,12, 601–611.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauter, D., Martin, B.J., Di Renzo, N. et al. Analysis of eye tracking movements using innovations generated by a Kalman filter. Med. Biol. Eng. Comput. 29, 63–69 (1991). https://doi.org/10.1007/BF02446297

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446297

Keywords