Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The asymptotic behaviour of maximum likelihood estimators for stationary point processes

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Billingsley, P. (1961).Statistical Inference for Markov Process, The University of Chicago Press, Chicago

    MATH  Google Scholar 

  2. Billingsley, P. (1961). The Lindeberg-Lévy Theorem for martingales,Proc. Amer. Math. Soc.,12, 788–792.

    MathSciNet  MATH  Google Scholar 

  3. Dellacherie, C. (1972).Capacities et Processus Stochastiques, Springer-Verlag, Heidelberg.

    MATH  Google Scholar 

  4. Feller, W. (1966).An Introduction to Probability Theory and its Applications, Vol. 2. John Wiley & Sons, New York.

    MATH  Google Scholar 

  5. Hawkes, A. G. and Oakes, D. (1974). A cluster process representation of a self-exiting point process,J. Appl. Prob.,11, 493–503.

    Article  Google Scholar 

  6. Kavanov, Yu. M., Lipster, R. Sh. and Shiryaev, A. N. (1975). Martingale method in the theory of point processes (in Russian),Proceeding of Vilnius Symposium U.S.S.R.

  7. Meyer, P. A. (1972).Martingales and Stochastic Integrals I, Lecture Notes in Mathematics, 284, Springer, Berlin.

    MATH  Google Scholar 

  8. Ozaki, T. (1977). Maximum likelihood estimation of Hawkes' self-exciting point process,Research Memorandom, No. 115, The Institute of Statistical Mathematics, Tokyo.

    Google Scholar 

  9. Vere-Jones, D. (1973).Lectures on Point Processes, Department of Statistics, University of California, Berkeley.

    Google Scholar 

  10. Vere-Jones, D. (1975). On updating algorithms and inference for stochastic point processes,Perspectives in probability and statistics, Gani, J. ed., Applied Probability Trust.

  11. Aczel, J. (1966).Lectures on Functional Equations and their Applications, Academic Press, New York.

    MATH  Google Scholar 

  12. Daley, D. J. and Vere-Jones, D. (1972). A summary of the theory of point processes,Stochastic point processes: statistical analysis, theory and applications, Lewis, A. W. ed., Wiley, New York.

    MATH  Google Scholar 

  13. Huber, P. J. (1967). The behaviour of maximum likelihood estimates under nonstandard conditions,Proc. 5th Berkeley Symp. Math. Statist. Prob.,1, 221–233.

    Google Scholar 

  14. Meyer, P. A. (1966).Probability and Potentials, Blaisdell Publishing Co., Waltham.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The Institute of Statistical Mathematics

About this article

Cite this article

Ogata, Y. The asymptotic behaviour of maximum likelihood estimators for stationary point processes. Ann Inst Stat Math 30, 243–261 (1978). https://doi.org/10.1007/BF02480216

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480216

Keywords