References
Billingsley, P. (1961).Statistical Inference for Markov Process, The University of Chicago Press, Chicago
Billingsley, P. (1961). The Lindeberg-Lévy Theorem for martingales,Proc. Amer. Math. Soc.,12, 788–792.
Dellacherie, C. (1972).Capacities et Processus Stochastiques, Springer-Verlag, Heidelberg.
Feller, W. (1966).An Introduction to Probability Theory and its Applications, Vol. 2. John Wiley & Sons, New York.
Hawkes, A. G. and Oakes, D. (1974). A cluster process representation of a self-exiting point process,J. Appl. Prob.,11, 493–503.
Kavanov, Yu. M., Lipster, R. Sh. and Shiryaev, A. N. (1975). Martingale method in the theory of point processes (in Russian),Proceeding of Vilnius Symposium U.S.S.R.
Meyer, P. A. (1972).Martingales and Stochastic Integrals I, Lecture Notes in Mathematics, 284, Springer, Berlin.
Ozaki, T. (1977). Maximum likelihood estimation of Hawkes' self-exciting point process,Research Memorandom, No. 115, The Institute of Statistical Mathematics, Tokyo.
Vere-Jones, D. (1973).Lectures on Point Processes, Department of Statistics, University of California, Berkeley.
Vere-Jones, D. (1975). On updating algorithms and inference for stochastic point processes,Perspectives in probability and statistics, Gani, J. ed., Applied Probability Trust.
Aczel, J. (1966).Lectures on Functional Equations and their Applications, Academic Press, New York.
Daley, D. J. and Vere-Jones, D. (1972). A summary of the theory of point processes,Stochastic point processes: statistical analysis, theory and applications, Lewis, A. W. ed., Wiley, New York.
Huber, P. J. (1967). The behaviour of maximum likelihood estimates under nonstandard conditions,Proc. 5th Berkeley Symp. Math. Statist. Prob.,1, 221–233.
Meyer, P. A. (1966).Probability and Potentials, Blaisdell Publishing Co., Waltham.
Author information
Authors and Affiliations
Additional information
The Institute of Statistical Mathematics
About this article
Cite this article
Ogata, Y. The asymptotic behaviour of maximum likelihood estimators for stationary point processes. Ann Inst Stat Math 30, 243–261 (1978). https://doi.org/10.1007/BF02480216
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02480216