Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

The response of phytoplankton communities to changing lake environments

  • Published:
Swiss journal of hydrology Aims and scope Submit manuscript

Abstract

In this paper, empirical relationships between the mean phytoplankton biomass and limiting nutrient availability and between the underwater extinction of light and the biomass are used to define some of the physical aspects of lake environments subject to cultural eutrophication or to corrective restoration measures. The distinctive floristic distributions of different algae among such environments are shown to be closely related to general morphological and physiological properties of the algae themselves and that species sharing similar size- and shape-adaptations also share similar ecological growth and survival strategies. From these general predictions of the responses of phytoplankton to changing lake environments, it is deduced that deep lakes are slower to respond than shallow ones but that the transition between nutrient-and light-limitation is relatively abrupt: ‘resilience’ of the system to restoration measures may be an expression of their progress towards the transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braun-Blanquet, J.: Pflanzensociologie. Springer, Wien 1964.

    Google Scholar 

  2. Clasen, J.; Das Ziel der Phosphoreliminierung am Zulauf der Wahnbachtalsperre im Hinblick auf die Oligotrophierung dieses Gewässers. Z. Wass. AbwassForsch.12, 65–77 (1979).

    Google Scholar 

  3. Connell, J.H.: On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat.122, 661–696 (1983).

    Article  Google Scholar 

  4. Dillon, P.J., and Rigler, F.H.: The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr.19, 767–773 (1974).

    CAS  Google Scholar 

  5. Edmondson, W.T., and Litt, A.:Daphnia in Lake Washington. Limnol. Oceanogr.27, 272–293.

  6. Findenergg, I.: Relationship between standing crop and primary productivity. In: Goldman, C.R. (ed.): Primary productivity in aquatic environments. Mem. Ist. ital. Idrobiol. suppl.18, 271–289. University of California Press, Berkeley.

  7. Ganf, G.G.: Factors controlling the growth of phytoplankton in Mount Bold Reservoir, South Australia. Tech. Pap. Aust. Water Res. Council48, 1–109.

  8. Grime, J.P.: Plant strategies and vegetation processes. Wiley-Interscience, Chichester 1979.

    Google Scholar 

  9. Hardin, G.: The competitive exclusion principle. Science131, 1292–1297 (1960).

    Article  CAS  PubMed  Google Scholar 

  10. Harris, G.P.: Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Ergebn. Limnol.10, 1–163 (1978).

    Google Scholar 

  11. Harris, G.P.: Mixed layer physics and phytoplankton populations; studies in equilibrium and non-equilibrium ecology. In: Round F.E., and Chapman, D. (eds): Progress in phycological research, vol. 2, p. 1–52. Elsevier, Amsterdam 1983.

    Google Scholar 

  12. Harris, G.P.: Phytoplankton ecology: structure, function and fluctuation. Chapman and Hall, London 1986.

    Google Scholar 

  13. Hutchinson, G.E.: The paradox of the plankton. Am. Nat.95, 137–146 (1961).

    Article  Google Scholar 

  14. Hutchinson, G.E.: A treatise on limnology, vol. 2: Introduction to Lake Biology and the Limnoplankton. Wiley, New York 1967.

    Google Scholar 

  15. Jones, R.I.: Factors controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh). III. Interspecific competition in relation to irradiance and temperature. J. Ecol.65, 579–586 (1977).

    Article  Google Scholar 

  16. Kirk, J.T.P.: Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge 1983.

    Google Scholar 

  17. Larkum, A.W.D., and Barrett, J.: Light harvesting processes in algae. In: Woolhouse, H.W. (ed.). Advances in botanical research, vol. 10, p. 1–219, Academic Press, London 1983.

    Google Scholar 

  18. Lee, G.F., Rast, W., and Jones, R.A.: Eutrophication of water bodies: insights for an age-old problem. Envir. Sci. Tech.12, 900–908 (1978).

    Google Scholar 

  19. Margalef, R.: Communication of structure in planktonic populations. Limnol. Oceanogr.6, 124–128 (1961).

    Article  Google Scholar 

  20. Margalef, R.: Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologia Acta1, 493–509 (1978).

    Google Scholar 

  21. McArthur, R.H., and Wilson, E.O.: The theory of island biogeography. Princeton University Press, Princeton 1967.

    Google Scholar 

  22. Moss, B.: The influence of environmental factors on the distribution of freshwater algae. I. Introduction and the influence of calcium concentration. J. Ecol.60, 917–932 (1972).

    Article  CAS  Google Scholar 

  23. Moss, B.: The influence of environmental factors on the distribution of freshwater algae. II. The role of pH and the CO2−HCO3 system. J. Ecol.61, 157–177 (1973).

    Article  CAS  Google Scholar 

  24. Moss, B.: The influence of environmental factors on the distribution of freshwater algae. III. Effects of temperature, vitamin requirements and inorganic nitrogen compounds on growth. J. Ecol.51, 179–192 (1973).

    Google Scholar 

  25. Moss, B.: The influence of environmental factors on the distribution of freshwater algae. IV. Growth of test species in natural lake waters and conclusion. J. Ecol.61, 193–211 (1973).

    Article  CAS  Google Scholar 

  26. Pavoni, M.: Die Bedeutung des Nanoplanktons im Vergleich zum Netzplankton. Schweiz. Z. Hydrol.25, 219–341 (1963).

    Article  Google Scholar 

  27. Pearsall, W.H.: Phytoplankton in the English Lakes. 2. The composition of the phytoplankton in relation to dissolved substances. J. Ecol.20, 241–262 (1932).

    Article  CAS  Google Scholar 

  28. Price, P.W.: Alternative paradigms in community ecology. In Price, P.W., Slobodchikoff, C.N., and Gand, W.S., (eds.): A new ecology: novel approaches to interactive systems, p. 353–383. Wiley-Interscience, New York 1984.

    Google Scholar 

  29. Ravera, O., and Vollenweider, R.A.:Oscillatoria rubescens D.C as an indicator of pollution. Schweiz. Z. Hydrol.30, 374–380 (1968).

    Article  Google Scholar 

  30. Reynolds, C.S.: Phosphorus and the eutrophication of lakes—a personal view. In: Porter, R., and FitzSimons, D. (eds.): Phosphorus in the environment: its chemistry and biochemistry, p. 201–228. Excerpta Medica, Amsterdam 1978.

    Google Scholar 

  31. Reynolds, C.S.: Processes controlling the quantities of biogenic materials in lakes and reservoirs subject to cultural eutrophication. Poll. Rep. U.K. Dept. Envir.8, 45–62 (1980).

    Google Scholar 

  32. Reynolds, C.S.: Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecol.3, 141–159 (1980).

    Google Scholar 

  33. Reynolds, C.S.: The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge 1984.

    Google Scholar 

  34. Reynolds, C.S.: Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biol.14, 111–142 (1984).

    Article  Google Scholar 

  35. Reynolds, C.S.: Experimental manipulations of the phytoplankton periodicity in large limnetic enclosures in Blelham Tarn, English Lake District. Hydrobiologia138, 43–64 (1986).

    Article  Google Scholar 

  36. Reynolds, C.S.: Diatoms and the geochemical cycling of silicon. In: Leadbeater, B.S.C., and Riding, R. (eds.): Biomineralization in the lower plants and animals, 269–289. Oxford University Press, Oxford 1986.

    Google Scholar 

  37. Reynolds, C.S.: Community organisation in the freshwater plankton. Symp. Brit. Ecol. Soc.23, in press.

  38. Reynolds, C.S.: Functional morphology and the adaptive strategies of freshwater phytoplankton, In: Sandgren, C.D. (ed.): Growth and survival strategies of freshwater phytoplankton, in press. Cambridge University Press, New York.

  39. Reynolds, C.S.: The theory of ecological succession applied to the freshwater phytoplankton. Verh. int. Verein. theor. angew. Limnol.23, in press.

  40. Reynolds, C.S.: Cyanobacterial water-blooms. In: Callow, P. (ed.): Advances in Botanical Research, vol 14, p. 67–143. Academic Press, London 1987.

    Google Scholar 

  41. Reynolds, C.S., and Reynolds, J.B.: The atypical seasonality of phytoplankton in Crose Mere, 1972: an independent test of the hypothesis that variability in the physical environment regulates community dynamics and structure. Brit. Phycol. J.20, 227–242 (1985).

    Google Scholar 

  42. Reynolds, C.S., Wiseman, S.W., and Clarke, M.J.O.: Growth- and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. J. appl. Ecol.21, 11–39 (1984).

    Article  Google Scholar 

  43. Reynolds, C.S., Wiseman, S.W., Godfrey, B.M., and Butterwick, C.: Some effects of artificial mixing on the dynamics of phytoplankton populations in large limnetic enclosures. J. Plankton Res.5, 203–234 (1983).

    Google Scholar 

  44. Rhee, G.-Y.: Effect of environmental factors and their interactions on phytoplankton growth. In: Marshall, K.C. (ed.): Advances in Microbial Ecology, vol. 6, p. 33–74. Plenum Press, London 1982.

    Google Scholar 

  45. Rodhe, W.: Environmental requirements of freshwater plankton algae: experimental studies in the ecology of phytoplankton. Symb. bot. upsal.10, 5–149 (1948).

    CAS  Google Scholar 

  46. Roughgarden, J.: Competition and theory in community ecology. Am. Nat.122, 583–601 (1983).

    Article  Google Scholar 

  47. Sas, H., and Vermij, S.: Intermediary report of the project, Eutrophication Management in International Perspective. IMSA, Amsterdam (1986).

    Google Scholar 

  48. Sommer, U.: The paradox of the plankton: fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnol. Oceanogr.29, 633–636 (1984).

    Article  Google Scholar 

  49. Southwood, T.R.E.: Habitat, the templet for ecological strategies. J. Animal Ecol.46, 337–365 (1977).

    Article  Google Scholar 

  50. Talling, J.F.: The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mit. int. Verein. theor. angew. Limnol.19, 214–243 (1971).

    Google Scholar 

  51. Tilman, D., Kilham, S.S., and Kilham, P.: Phytoplankton community ecology: the role of limiting nutrients. A. Rev. Ecol. Systematics13, 349–372 (1982).

    Article  Google Scholar 

  52. Vollenweider, R.A.: Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. ital. Idrobiol.33, 53–83 (1978).

    Google Scholar 

  53. Wofsy, S.C.: A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters. Limnol. Oceanogr.28, 1144–1155 (1983).

    Google Scholar 

  54. Zimmermann, U.: Ökologische und physiologische Untersuchungen an der planktonischen BlaualgeOscillatoria rubescens D.C. unter besonderer Berücksichtigung von Licht und Temperatur. Schweiz. Z. Hydrol.31, 1–58 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, C.S. The response of phytoplankton communities to changing lake environments. Schweiz. Z. Hydrol 49, 220–236 (1987). https://doi.org/10.1007/BF02538504

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02538504

Keywords