Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Guardian maps and the generalized stability of parametrized families of matrices and polynomials

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

The generalized stability of families of real matrices and polynomials is considered. (Generalized stability is meant in the usual sense of confinement of matrix eigenvalues or polynomial zeros to a prescribed domain in the complex plane, and includes Hurwitz and Schur stability as special cases.) Guardian maps and semiguardian maps are introduced as a unifying tool for the study of this problem. These are scalar maps which vanish when their matrix or polynomial argument loses stability. Such maps are exhibited for a wide variety of cases of interest corresponding to generalized stability with respect to domains of the complex plane. In the case of one- and two-parameter families of matrices or polynomials, concise necessary and sufficient conditions for generalized stability are derived. For the general multiparameter case, the problem is transformed into one of checking that a given map is nonzero for the allowed parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ackermann,Sampled Data Control Systems, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  2. J. Ackermann and B. R. Barmish, Robust Schur stability of a polytope of polynomials,IEEE Trans. Automat. Control,33 (1988), 984–986.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. C. Aitken, A letter to an Edinburgh colleague, appears as an appendix in: W. Ledermann, Obituary: A. C. Aitken, D.Sc., F.R.S.,Proc. Edinburgh Math. Soc.,16 (1945), 151–176.

  4. B. D. O. Anderson and R. W. Scott, Output feedback stabilization—solution by algebraic methods,Proc. IEEE,65 (1977), 849–861.

    Article  Google Scholar 

  5. A. I. Barkin and A. L. Zelentsovsky, Method of power transformations for analysis of stability of nonlinear control systems,Systems Control Lett.,3 (1983), 303–310.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. R. Barmish and C. L. DeMarco, Criteria for robust stability of systems with structured uncertainty: A perspective,Proceedings of the 1987 American Control Conference, Minneapolis, MN, 1987, pp. 476–481.

  7. A. C. Bartlett, C. V. Hollot, and L. Huang, Root locations of an entire polytope of polynomials: It suffices to check the edges,Math. Control Signals Systems,1 (1988), 61–71.

    MathSciNet  MATH  Google Scholar 

  8. S. Bialas, A necessary and sufficient condition for the stability of convex combinations of polynomials or matrices,Bull. Polish Acad. Sci.,33 (1985), 473–480.

    MathSciNet  MATH  Google Scholar 

  9. N. K. Bose,Applied Multidimensional Systems Theory, Van Nostrand Reinhold, New York, 1982.

    MATH  Google Scholar 

  10. J. W. Brewer, Kronecker products and matrix calculus in system theory,IEEE Trans. Circuits and Systems,25 (1978), 772–781.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. W. Brockett, Lie algebras and Lie groups in control theory, inGeometric Methods in System Theory (D. Q. Mayne and R. W. Brockett, eds.), Reidel, Dordrecht, pp. 33–82, 1973.

    Google Scholar 

  12. M. Fu and B. R. Barmish, Stability of convex and linear combinations of polynomials and matrices arising in robustness problems,Proceedings of the Conference on Information Sciences and Systems, John Hopkins University, Baltimore, MD, 1987, pp. 16–21.

  13. A. T. Fuller, Conditions for a matrix to have only characteristic roots with negative real parts,J. Math. Anal. Appl.,23 (1968), 71–88.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Genesio and A. Tesi, Results on the stability robustness of systems with state space perturbations,Systems Control Lett.,11 (1988), 39–46.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Gutman, Root clustering of a real matrix in an algebraic region,Internat. J. Control,29 (1979), 871–880.

    MathSciNet  MATH  Google Scholar 

  16. S. Gutman and E. I. Jury, A general theory for matrix root clustering in subregions of the complex plane,IEEE Trans. Automat. Control,26 (1981), 853–863.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Jacobson,Lectures in Abstract Algebra, Vol. 3, Van Nostrand Rheinhold, New York, 1964.

    MATH  Google Scholar 

  18. E. I. Jury,Inners and Stability of Dynamic Systems, Kreiger, Malabar, FL, 1983.

    Google Scholar 

  19. E. I. Jury, A note on aperiodicity conditions for linear discrete systems,IEEE Trans. Automat. Control,30 (1985), 1100–1101.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. I. Jury and T. Pavlidis, Stability and aperiodicity constraints for systems design,IEEE Trans. Circuit Theory,10 (1963), 137–141.

    Google Scholar 

  21. V. L. Kharitonov, Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,Differentsial’nye Uravneniya,14 (1978), 2086–2088.

    MathSciNet  MATH  Google Scholar 

  22. P. Lancaster and M. Tismenetsky,The Theory of Matrices, Academic Press, New York, 1985.

    MATH  Google Scholar 

  23. C. C. MacDuffee,The Theory of Matrices, Chelsea, New York, 1946.

    Google Scholar 

  24. L. Saydy, Studies in Robust Stability, Ph.D. dissertation, Department of Electrical Engineering, University of Maryland, College Park, December 1988.

    Google Scholar 

  25. L. Saydy, A Computer Algebra Code for Robust Generalized Stability, Technical Report, Systems Research Center, University of Maryland, College Park, in preparation.

  26. L. Saydy, A. L. Tits, and E. H. Abed, Robust stability of linear systems relative to guarded domains,Proceedings of the 27th IEEE Conference on Decision and Control, Austin, TX, 1988, pp. 544–551.

  27. L. Saydy, A. L. Tits, and E. H. Abed, Robust stability of complex families of matrices or polynomials, inControl of Uncertain Systems (D. Hinrichsen and B. Mårtensson, eds.), Progress in Control and System Theory, Birkhäuser, Boston, 1990.

    Google Scholar 

  28. C. Stéphanos, Sur une extension du calcul des substitutions linéaires,J. Math. Pures Appl.,6 (1900), 73–128.

    Google Scholar 

  29. A. Tesi and A. Vicino, Robustness analysis for uncertain dynamical systems with structured perturbations,Proceedings of the 27th IEEE Conference on Decision and Control, Austin, TX, 1988, pp. 519–525.

  30. M. Vidyasagar,Control System Synthesis: A Factorization Approach, MIT Press, Cambridge, MA, 1985.

    MATH  Google Scholar 

  31. E. Walach and E. Zeheb, Sign test of multivariable real polynomials,IEEE Trans. Circuits and Systems,27 (1980), 619–625.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by the National Science Foundation’s Engineering Research Centers Program, NSFD CDR 8803012, and was also supported by the NSF under Grants ECS-86-57561, DMC-84-51515, and by the Air Force Office of Scientific Research under Grant AFOSR-87-0073.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saydy, L., Tits, A.L. & Abed, E.H. Guardian maps and the generalized stability of parametrized families of matrices and polynomials. Math. Control Signal Systems 3, 345–371 (1990). https://doi.org/10.1007/BF02551375

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551375

Key words