Abstract
For any listL ofn numbers in (0, 1) letL* denote the minimum number of unit capacity bins needed to pack the elements ofL. We prove that, for every positive ε, there exists anO(n)-time algorithmS such that, ifS(L) denotes the number of bins used byS forL, thenS(L)/L*≦1+ε for anyL providedL* is sufficiently large.
Similar content being viewed by others
References
M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest andR. E. Tarjan, Time bounds for selection,J. Comput. Sys. Sci.,7 (1973), 448–461.
M. R. Garey, R. L. Graham, D. S. Johnson andA. C. Yao, Multiprocessor scheduling as generalized bin-packing,J. Combinatorial Theory A21 (1976), 257–298.
M. R. Garey andD. S. Johnson,Computers and Intractability, Freeman, San Francisco, 1979.
M. R. Garey andD. S. Johnson, Approximation algorithms for bin packing problems: a survey,preprint 1980.
D. S. Johnson,Near optimal bin packing algorithms, Ph. D. Th., MIT, Cambridge, Mass., June 1973.
D. S. Johnson, Fast algorithms for bin packing,J. Comptr. Syst. Sci. 8 (1974), 272–314.
D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey andR. L. Graham, Worst case bounds for simple one-dimensional packing algorithms,SIAM J. Comptg. 3 (1974), 299–325.
R. M. Karp, Reducibility among combinatorial problems, in:Complexity of Computer calculations. (R. E. Miller and J. W. Thatcher, Eds.) Plenum Press, New York, 1972, 85–103.
D. E. Knuth,The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley, Reading, Mass., 1973.
A. Schönhage, M. S. Paterson andN. Pippenger, Finding the median,J. Comput. Sys. Sci. 13 (1976), 184–199.
A. C. Yao, New algorithms for bin packing.J. ACM 27, 2 (Apr. 1980).
J. L. Bentley, Probabilistic analysis of algorithms,Applied Probability—Computer Science, the Interface, Boca Raton, Florida, January 1981.
P. C. Gilmore andR. E. Gomory, A linear programming approach to the cutting-stock problem,Operations Research 9 (1961), 849–859.
O. H. Ibarra andC. E. Kim, Fast approximation algorithms for the knapsack and sum of subset problems,Journal of the ACM 22 (1975), 463–468.
L. V. Kantorovtch, Mathematical methods of organizing and planning production,Management Science 6, 4 (July 1960), 366-422.
S. Sahni, General techniques for combinatorial approximation,Operations Research 25, 6 (1977), 920-936.
B. W. Weide,Statistical Methods in Algorithm Design and Analysis, Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, Pennsylvania (August 1978); appeared as CMU Computer Science Report CMU-CS-78-142.
Author information
Authors and Affiliations
Additional information
The work of this author was supported by NSF Grant MCS 70-04997.