Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parametric approaches to fractional programs

  • Published:
Mathematical Programming Submit manuscript

Abstract

The fractional program P is defined by maxf(x)/g(x) subject toxX. A class of methods for solving P is based on the auxiliary problem Q(λ) with a parameter λ: maxf(x)−λg(x) subject toxX. Starting with two classical methods in this class, the Newton method and the binary search method, a number of variations are introduced and compared. Among the proposed methods. the modified binary search method is theoretically interesting because of its superlinear convergence and the capability to provide an explicit interval containing the optimum parameter value\(\bar \lambda \). Computational behavior is tested by solving fractional knapsack problems and quadratic fractional programs. The interpolated binary search method seems to be most efficient, while other methods also behave surprisingly well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Bitran, “Experiments with linear fractional problems”,Naval Research Logistics Quarterly 26 (1979) 689–693.

    MATH  Google Scholar 

  2. W. Dinkelbach, “On nonlinear fractional programming”,Management Science 13 (1967) 492–498.

    MathSciNet  Google Scholar 

  3. T. Ibaraki, H. Ishii, J. Iwase, T. Hasegawa and H. Mine, “Algorithms for quadratic fractional programming problems”,Journal of the Operations Research Society of Japan 19 (1976) 174–191.

    MATH  MathSciNet  Google Scholar 

  4. T. Ibaraki, “Solving mathematical programming problems with fractional objective function”, in: S. Schaible and W. T. Ziemba, eds.,Generalized concavity in optimization and economics (Academic Press, New York, 1981) pp. 441–472.

    Google Scholar 

  5. J. R. Isbell and W. H. Marlow, “Attrition games”,Naval Research Logistics Quarterly 3 (1956) 71–93.

    MathSciNet  Google Scholar 

  6. R. Jagannathan, “On some properties of programming problems in parametric form pertaining to fractional programming”,Management Science 12 (1966) 609–615.

    MathSciNet  Google Scholar 

  7. E. L. Lawler,Combinatorial optimization: Networks and matroids (Holt, Rinehart and Winston, New York, 1976) pp. 94–97.

    MATH  Google Scholar 

  8. C. E. Lemke, “On complementary pivot theory”, in: G. B. Dantzig and A. F. Veinott Jr., eds.,Mathematics of the decision sciences, Part I (American Mathematical Society, Providence, RI, 1968) pp. 95–114.

    Google Scholar 

  9. J. M. Ortega and W. C. Rheinbolt,Iterative solution of nonlinear equations in several variables (Academic Press, New York 1970).

    MATH  Google Scholar 

  10. A. M. Ostrowski,Solution of equations in Euclidian and Banach spaces (Academic Press, New York, 1973).

    Google Scholar 

  11. S. Schaible, “Fractional programming II, on Dinkelbach's algorithm”,Management Science 22 (1976) 868–873.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Schaible, “Duality in fractional programming: a unified approach”,Operations Research 24 (1976) 452–461.

    MATH  MathSciNet  Google Scholar 

  13. S. Schaible,Analyse und Anwendungen von Quotientenprogrammen (Hain-Verlag, Meisenheim, 1978).

    MATH  Google Scholar 

  14. S. Schaible, “A survey of fractional programming”, in: S. Schaible and W. T. Ziemba, eds.,Generalized Concavity in optimization and economics (Academic Press, New York, 1981) pp. 417–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibaraki, T. Parametric approaches to fractional programs. Mathematical Programming 26, 345–362 (1983). https://doi.org/10.1007/BF02591871

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591871

Key words