Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Polynomiality of primal-dual affine scaling algorithms for nonlinear complementarity problems

  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper provides an analysis of the polynomiality of primal-dual interior point algorithms for nonlinear complementarity problems using a wide neighborhood. A condition for the smoothness of the mapping is used, which is related to Zhu’s scaled Lipschitz condition, but is also applicable to mappings that are not monotone. We show that a family of primal-dual affine scaling algorithms generates an approximate solution (given a precision ε) of the nonlinear complementarity problem in a finite number of iterations whose order is a polynomial ofn, ln(1/ε) and a condition number. If the mapping is linear then the results in this paper coincide with the ones in Jansen et al., SIAM Journal on Optimization 7 (1997) 126–140.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Anstreicher and R. Bosch, A new infinity-norm path following algorithm for linear programming,SIAM Journal on Optimization 5 (1995) 236–246.

    Article  MATH  MathSciNet  Google Scholar 

  2. R.W. Cottle, J.S. Pang and R.E. Stone,The Linear Complementarity Problem, Computer Science and Scientific Computing (Academic Press, San Diego, 1992).

    Google Scholar 

  3. I.I. Dikin, Iterative solution of problems of linear and quadratic programming,Doklady Akademii Nauk SSSR 174 (1967) 747–748. [Translated in:Soviet Mathematics Doklady 8 (1967) 674–675.]

    MathSciNet  Google Scholar 

  4. R.M. Freund and M.J. Todd, Barrier functions and interior-point algorithms for linear programming with zero-, one-, or two-sided bounds on the variables,Mathematics of Operations Research 20 (1995) 415–440.

    MATH  MathSciNet  Google Scholar 

  5. C.C. Gonzaga, Path following methods for linear programming,SIAM Review 34 (1992) 167–227.

    Article  MATH  MathSciNet  Google Scholar 

  6. O. Güler, Path following and potential reduction algorithms for nonlinear monotone complementarity problems. Working Paper, Dept. of Management Science, University of Iowa, Iowa City, 1991.

  7. O. Güler, Existence of interior points and interior paths in nonlinear monotone complementarity problems,Mathematics of Operations Research 18 (1993) 128–147.

    MATH  MathSciNet  Google Scholar 

  8. O. Güler, Generalized linear complementarity problems,Mathematics of Operations Research 20 (1995) 441–448.

    MATH  MathSciNet  Google Scholar 

  9. P.T. Harker and J.S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications,Mathematical Programming 48 (1990) 161–220.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. den Hertog,Interior Point Approach to Linear, Quadratic and Convex Programming, Algorithms and Complexity (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994).

    MATH  Google Scholar 

  11. D. den Hertog, F. Jarre, C. Roos and T. Terlaky, A sufficient condition for self-concordance, with application to some classes of structured convex programming,Mathematical Programming 69 (1995) 75–88.

    MathSciNet  Google Scholar 

  12. D. den Hertog, C. Roos and T. Terlaky, On the classical logarithmic barrier function method for a class of smooth convex programming problems,Journal of Optimization Theory and Applications 73 (1992) 1–25.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Jansen, C. Roos and T. Terlaky, A family of polynomial affine scaling algorithms for positive semi-definite linear complementarity problems, Technical Report 93-112, Faculty of Technical Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 1993; also:SIAM Journal on Optimization 7 (1997) 126–140.

    Google Scholar 

  14. B. Jansen, C. Roos and T. Terlaky, A polynomial primal-dual Dikin-type algorithm for linear programming,Mathematics of Operations Research 21 (1996) 341–353.

    MATH  MathSciNet  Google Scholar 

  15. F. Jarre, The method of analytic centers for smooth convex programs, Ph.D. Thesis, Institut für Angewandte Mathematik und Statistik, Universität Würzburg, Würzburg, Germany, 1989.

    MATH  Google Scholar 

  16. F. Jarre, Interior-point methods for convex programming,Applied Mathematics & Optimization 26 (1992) 287–311.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Jarre, Interior-point methods via self-concordance or relative Lipschitz condition,Optimization Methods and Software 5 (1995) 75–104.

    Google Scholar 

  18. M. Kojima, Y. Kurita and S. Mizuno, Large-step interior point algorithms for linear complementarity problems,SIAM Journal on Optimization 3 (1993) 398–412.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Kojima, N. Megiddo and S. Mizuno, Theoretical convergence of large-step-primal-dual interior point algorithms for linear programming,Mathematical Programming 59 (1993) 1–21.

    Article  MathSciNet  Google Scholar 

  20. M. Kojima, N. Megiddo, T. Noma and A. Yoshise,A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Vol. 538 of Lecture Notes in Computer Science, Vol. 538 (Springer, Berlin, 1991).

    Google Scholar 

  21. M. Kojima, N. Megiddo and Y. Ye, An interior point potential reduction algorithm for the linear complementarity problem,Mathematical Programming 54 (1992) 267–279.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Kojima, S. Mizuno and T. Noma, A new continuation method for complementarity problems with uniformP-functions,Mathematical Programming 43 (1989) 107–113.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Kojima, S. Mizuno and T. Noma, Limiting behavior of trajectories by a continuation method for monotone complementarity problems,Mathematics of Operations Research 15 (1990) 662–675.

    MATH  MathSciNet  Google Scholar 

  24. M. Kojima, S. Mizuno and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems,Mathematical Programming 44 (1989) 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Kojima, S. Mizuno and A. Yoshise, A primal-dual interior point algorithm for linear programming, in: N. Megiddo, ed.,Progress in Mathematical Programming: Interior Point and Related Methods (Springer, New York, 1989) 29–47.

    Google Scholar 

  26. M. Kojima, S. Mizuno and A. Yoshise, An O(√nL) iteration potential reduction algorithm for linear complementarity problems,Mathematical Programming 50 (1991) 331–342.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Kojima, T. Noma and A. Yoshise, Global convergence in infeasible-interior-point algorithms,Mathematical Programming 65 (1994) 43–72.

    Article  MathSciNet  Google Scholar 

  28. K.O. Kortanek, F. Potra and Y. Ye. On some efficient interior point methods for nonlinear convex programming,Linear Algebra and Its Applications 152 (1991) 169–189.

    Article  MATH  MathSciNet  Google Scholar 

  29. K.O. Kortanek and J. Zhu, A polynomial barrier algorithm for linearly constrained convex programming problems,Mathematics of Operations Research 18 (1993) 116–127.

    MATH  MathSciNet  Google Scholar 

  30. P. Ling, A new proof of convergence for the new primal-dual affine scaling interior-point algorithm of Jansen, Roos and Terlaky, Technical Report SYS-C93-09, School of Information Systems, University of East-Anglia, Norwich, 1993.

  31. L. McLinden, The analogue of Moreau’s proximation theorem, with applications to the nonlinear complementarity problem,Pacific Journal of Mathematics 88 (1980) 101–161.

    MATH  MathSciNet  Google Scholar 

  32. S. Mizuno, O(n pL) iteration O(n 3L) potential reduction algorithms for linear programming,Linear Algebra and Its Applications 152 (1991) 155–168.

    Article  MATH  MathSciNet  Google Scholar 

  33. S. Mizuno and M.J. Todd, An O(n 3L) adaptive path following algorithm for a linear complementarity problem,Mathematical Programming 52 (1991) 587–595.

    Article  MATH  MathSciNet  Google Scholar 

  34. R.D.C. Monteiro and I. Adler, Interior path following primal-dual algorithms: Part I: Linear programming,Mathematical Programming 44 (1989) 27–41.

    Article  MATH  MathSciNet  Google Scholar 

  35. R.D.C. Monteiro and I. Adler, Interior path following primal-dual algorithms: Part II: Convex quadratic programming,Mathematical Programming 44 (1989) 43–66.

    Article  MATH  MathSciNet  Google Scholar 

  36. R.D.C. Monteiro and I. Adler, An extension of Karmarkar-type algorithm to a class of convex separable programming problems with global linear rate of convergence,Mathematics of Operations Research 15 (1990) 408–422.

    MATH  MathSciNet  Google Scholar 

  37. R.D.C. Monteiro, I. Adler and M.G.C. Resende, A polynomial-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension,Mathematics of Operations Research 15 (1990) 191–214.

    Article  MATH  MathSciNet  Google Scholar 

  38. R.D.C. Monteiro, J.-S. Pang and T. Wang, A positive algorithm for the nonlinear complementarity problem,SIAM Journal on Optimization 5 (1995) 129–148.

    Article  MATH  MathSciNet  Google Scholar 

  39. Y. Nesterov, Long-step strategies in interior point potential reduction methods, Technical Report, University of Geneva, Geneva, Switzerland, 1993.

    Google Scholar 

  40. Y. Nesterov and A.S. Nemirovsky,Interior Point Polynomial Algorithms in Convex Programming, SIAM Studies in Applied Mathematics, Vol. 13 (SIAM, Philadelphia, PA, 1994).

    Google Scholar 

  41. Y. Nesterov and M.J. Todd, Self-scaled barriers and interior-point methods for convex programming, Technical Report 1091, School of OR and IE, Cornell University, Ithaca, NY, 1994; also:Mathematics of Operations Research 22 (1997) 1–42.

    Google Scholar 

  42. J.S. Pang and S.A. Gabriel, NE/SQP: A robust algorithm for the nonlinear complementarity problem,Mathematical Programming 60 (1993) 295–337.

    Article  MathSciNet  Google Scholar 

  43. F.A. Potra and Y. Ye, Interior point methods for nonlinear complementarity problems, Reports on Computational Mathematics 15, Dept. of Mathematics, The University of Iowa, Iowa City, 1991; also:Journal of Optimization Theory and Applications, to appear.

    Google Scholar 

  44. J. Sun, J. Zhu and G. Zhao, A predictor-corrector algorithm for a class of nonlinear saddle point problems. Technical Report, National University of Singapore, Singapore, 1994.

    Google Scholar 

  45. J. Sun and G. Zhao, A quadratically convergent polynomial-step algorithm for a class of nonlinear monotone complementarity problems, Technical Report, Dept. of Decision Sciences, National University of Singapore, Singapore, 1995.

    Google Scholar 

  46. H. Väliaho,P * matrices are just sufficient, Research Report, Department of Mathematics, University of Helsinki, Helsinki, 1994; also:Linear Algebra and Its Applications 239 (1996) 103–108.

    Google Scholar 

  47. S.J. Wright, A path-following infeasible-interior-point algorithm for linear complementarity problems,Optimization Methods and Software 2 (1993) 79–106.

    Google Scholar 

  48. P. Tseng, Global linear convergence of a path following algorithm for some variational inequality problems,Journal of Optimization Theory and Applications 75 (1992) 265–279.

    Article  MATH  MathSciNet  Google Scholar 

  49. Y. Ye and K.M. Anstreicher, On quadratic and O(√nL) convergence of predictor-corrector algorithms for LCP,Mathematical Programming 62 (1993) 537–551.

    Article  MathSciNet  Google Scholar 

  50. Y. Ye and P.M. Pardalos, A class of linear complementarity problems solvable in polynomial time,Linear Algebra and Its Applications 152 (1991) 3–17.

    Article  MATH  MathSciNet  Google Scholar 

  51. J. Zhu, A path following algorithm for a class of convex programming problems,Zeitschrift für Operations Research 36 (1992) 359–377.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by Grant-in-Aids for Encouragement of Young Scientists (06750066) from the Ministry of Education, Science and Culture, Japan.

Research supported by Dutch Organization for Scientific Research (NWO), grant 611-304-028

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, B., Roos, K., Terlaky, T. et al. Polynomiality of primal-dual affine scaling algorithms for nonlinear complementarity problems. Mathematical Programming 78, 315–345 (1997). https://doi.org/10.1007/BF02614359

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614359

Keywords