Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Electrical characterization of semiconducting diamond thin films and single crystals

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Naturally occurring semiconducting single crystal (type IIb) diamonds and boron doped polycrystalline thin films were characterized by differential capacitance-voltage and Hall effect measurements, as well as secondary ion mass spectroscopy (SIMS). Results for natural diamonds indicated that the average compensation for a type IIb diamond was >17%. Mobilities for the natural crystals varied between 130 and 564 cm2/V·s at room temperature. The uncompensated dopant concentration obtained by C-V measurements (2.8 ± 0.1 × 1016 cm−3) was consistent with the atomic B concentration measured by SIMS performed on similar samples (3.0 ± 1.5 x 1016 cm−3). Measurement of barrier heights for three different metals (platinum, gold, and aluminum) found essentially the same value of 2.3 ± 0.1 eV in each case, indicating that the Fermi level was pinned at the diamond surface. Polycrystalline semiconducting diamond thin films demonstrated a complex carrier concentration behavior as a function of dopant density. This behavior may be understood in terms of a grain boundary model previously developed for polycrystalline silicon, or by considering a combination of compensation and impurity band conduction effects. The highest mobility measured for a polycrystalline sample was 10 cm2/V·s, indicating that electrical transport in the polycrystalline material was significantly degraded relative to the single crystal samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Zhu, B.R. Stoner, B.E. Williams and J.T. Glass,Proc. of the IEEE 79, 621 (1991).

    Article  CAS  Google Scholar 

  2. G.S. Gildenblat, S.A. Grot and A Badzian,Proc. of the IEEE 79, 647 (1991).

    Article  CAS  Google Scholar 

  3. M.W. Geis, N.N. Efremow and D.D. Rathman,J. Vac. Sci. Technol. A 6, 1052 (1987).

    Google Scholar 

  4. E.C. Lightowlers and A.T. Collins,J. Phys. D: Appl. Phys. 9, 951 (1976).

    Article  CAS  Google Scholar 

  5. F.D. Hughes,Acta Electronica 15, 43 (1972).

    CAS  Google Scholar 

  6. E.C. Lightowlers and A.T. Collins,Phys. Rev. 151,685 (1966).

    Article  CAS  Google Scholar 

  7. A.T. Collins and A.W.S. Williams,J. Phys. C: Solid St. Phys. 4, 1789 (1971).

    Article  CAS  Google Scholar 

  8. A.W.S. Williams, PhD. Thesis (University of London, 1971).

  9. A.T. Collins and E.C. Lightowlers, inThe Properties of Diamond (ed. J.E. Field) 79 (Academic Press, London, 1979).

    Google Scholar 

  10. P. de la Houssaye, CM. Penchina, C.A. Hewett, J.R. Zeidler, and G. Zeidler,J. Appl. Phys. 71, 3220 (1992).

    Article  Google Scholar 

  11. G.H. Glover,Solid-State Electron, 16, 973 (1973).

    Article  Google Scholar 

  12. M.I. Landstrass and K. V. Ravi,Appl. Phys Lett. 55, 975(1989).

    Article  CAS  Google Scholar 

  13. M.I. Landstrass and K.V. Ravi,Appl. Phys. Lett. 55, 1391 (1989).

    Article  CAS  Google Scholar 

  14. S. Albin, S. Watkins and L. Watkins,IEEE Electron Dev. Lett. 11, 159 (1990).

    Article  CAS  Google Scholar 

  15. Y. Muto, T. Sugino, K. Kobashi and J. Shirafuji,Jpn. J. Appl. Phys. 31, L4 (1991).

    Article  Google Scholar 

  16. H. Nakahata, I. Takahiro and F. Naoji, 179th Mtg. Electrochem. Soc, Washington, DC (1991).

    Google Scholar 

  17. K. Nishimura, K. Das and J.T. Glass,J. Appl. Phys. 69, 3142 (1991).

    Article  CAS  Google Scholar 

  18. J.Y.W. Seto, W.J. Appl. Phys. 46, 5247 (1975).

    Article  CAS  Google Scholar 

  19. G. Baccarani, B. Ricco, and G. Spadini,J. Appl. Phys. 49, 5565 (1978).

    Article  CAS  Google Scholar 

  20. K. Das, V. Venkatesan, K. Miyata, D.L. Dreifus and J.T. Glass, inApplications of Diamond Films and Related Materials (eds. Y. Tzeng, M. Yoshikawa, M. Murakawa and A., F.) 301 (Elsevier, Amsterdam, 1991).

    Google Scholar 

  21. K. Miyata, D. Dreifus and K. Kobashi,Appl. Phys. Lett. 60, 480 (1992).

    Article  CAS  Google Scholar 

  22. G.S. Gildenblat, S.A. Grot, C.R. Wronski, M.C. Hicks, A.R. Badzian, T. Badzian and R. Messier,IEDM 626 (1988).

  23. G.S. Gildenblat, S.A. Grot, C.R. Wronski, A.R. Badzian, T. Badzian and R. Messier,Appl. Phys. Lett. 53, 586 (1988).

    Article  CAS  Google Scholar 

  24. J.A. von Windheim, I. Renaud and M. Cocivera,J. Appl. Phys. 67,4167(1990).

    Article  Google Scholar 

  25. L.J. van der Pauw,Philips Res. Rpts. 13, 1 (1958).

    Google Scholar 

  26. K.L. Moazed and J.R. Zeidler, inPower Converter Handbook (Intertec Communications, Inc, 1989).

  27. K.L. Moazed, J. Zeidler and M. Taylor,J. Appl. Phys. 68, 2246 (1990).

    Article  CAS  Google Scholar 

  28. V. Venkatesan and K. Das,IEEE Electron Dev. Lett. 13, 126 (1992).

    Article  CAS  Google Scholar 

  29. J.F. Prins,J. Phys. D. Appl. Phys. 22, 1562 (1989).

    Article  CAS  Google Scholar 

  30. J.F. Keithley, J.R. Yeager and R.J. Erdman,Low Level Measurements (Keithley Instruments, Inc., Cleveland, Ohio USA, 1984).

    Google Scholar 

  31. M. Geis, J. Gregory and B. Pate,IEEE Trans. Electron Dev. 38, 619 (1991).

    Article  CAS  Google Scholar 

  32. J.-J. Shiau, A.L. Fahrenbruch and R.H. Bube,J. Appl. Phys. 61, 1556(1987).

    Article  CAS  Google Scholar 

  33. V. Venkatesan, K. Das, J.A. von Windheim and M.W. Geis (to be published).

  34. S.M. Sze,Physics of Semiconductor Devices (John Wiley and Sons, New York, 1981).

    Google Scholar 

  35. J.P. McKelvey,Solid State and Semiconductor Physics (Harper and Row, New York, 1966).

    Google Scholar 

  36. P.T. Wedepohl,Proc. Phys. Soc. 70B, 177 (1957).

    CAS  Google Scholar 

  37. C.A. Mead,Solid-State Electron. 9, 1023 (1966).

    Article  CAS  Google Scholar 

  38. C.A. Mead and T.C McGill,Phys. Lett. 58A, 249 (1976).

    CAS  Google Scholar 

  39. A.W.S. Williams, E.C. Lightowlers and A.T. Collins,J Phys. C: Solid St. Phys. 3, 1727 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Von Windheim, J.A., Venkatesan, V., Malta, D.M. et al. Electrical characterization of semiconducting diamond thin films and single crystals. J. Electron. Mater. 22, 391–398 (1993). https://doi.org/10.1007/BF02661667

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661667

Key words