Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The nucleon of cooperative games and an algorithm for matching games

  • Published:
Mathematical Programming Submit manuscript

Abstract

Thenucleon is introduced as a new allocation concept for non-negative cooperativen-person transferable utility games. The nucleon may be viewed as the multiplicative analogue of Schmeidler’s nucleolus. It is shown that the nucleon of (not necessarily bipartite) matching games can be computed in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Curiel, Cooperative Game Theory and Applications, Kluwer, Dordrecht, 1997.

    Google Scholar 

  2. M. Shubik, Game theory models and methods in political economy, In: K.J. Arrow et al. (Eds.), Handbook of Mathematical Economics, vol. 1, North-Holland, New York, 1981.

    Google Scholar 

  3. J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior, Princeton Univ. Press, Princeton, NJ, 1944.

    MATH  Google Scholar 

  4. L.S. Shapley, M. Shubik, Quasi-cores in a monetary economy with nonconvex preferences, Econometrica 34 (1966) 805–827.

    Article  MATH  Google Scholar 

  5. U. Faigle, W. Kern, On some approximately balanced combinatorial cooperative games, ZOR—Methods and Models of Operations Research 38 (1993) 141–152.

    Article  MATH  MathSciNet  Google Scholar 

  6. S.H. Tijs, T.S.H. Driessen, Extensions of solution concepts by means of multiplicative ε-tax games, Mathematical social Sciences 12 (1986) 9–20.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.A.M. Potters, J.H. Reijnierse, M. Ansing, Computing the nucleolus by solving a prolonged simplex algorithm, Mathematics of Operation Research 21 (1996) 757–768.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Schmeidler, The nucleolus of a characteristic function game, SIAM Journal of Applied Mathematics 17 (1969) 1163–1170.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Solymosi, T.E.S. Raghavan, An algorithm for finding the nucleolus of assignment games, International Journal of Game Theory 23 (1994) 119–143.

    Article  MATH  MathSciNet  Google Scholar 

  10. U. Faigle, S.P. Fekete, W. Hochstättler, W. Kern, 1995. On approximately fair cost allocation in Euclidean TSP games, OR Spektrum (to appear).

  11. G.J. Woeginger, On the rate of taxation in a cooperative bin packing game. Methods and Models of Operations Research 42 (1995) 313–324.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Kuipers, Oral communication (1995).

  13. M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Heidelberg, 1988.

    MATH  Google Scholar 

  14. L. Lovász, M.D. Plummer. Matching theory, in: North-Holland Mathematical Studies, vol. 121, North-Holland, Amsterdam, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Faigle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faigle, U., Kern, W., Fekete, S.P. et al. The nucleon of cooperative games and an algorithm for matching games. Mathematical Programming 83, 195–211 (1998). https://doi.org/10.1007/BF02680558

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02680558

Keywords