Abstract
It is well known that classical Runge-Kutta approximations for dynamical systems do not converge with high order when the control is not smooth with respect to time. We consider here a generalization of RK schemes for linear systems which preserves its order with measurable controls, and obtain as consequence a result of high-order approximation for the reachable set.
Zusammenfassung
Es ist bekannt, daß klassische Runge-Kutta-Approximationen für dynamische Systeme nicht mit höherer Ordnung konvergieren, falls die Kontrolle nicht glatt bezüglich der Zeit ist. Wir betrachten hier eine Verallgemeinerung von RK-Schemata für lineare Systeme, bei der für meßbare Kontrollen die Konvergenzordnung erhalten bleibt, und erhalten als Konsequenz eine Approximation der erreichbaren Menge von hoher Ordnung.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Crouzeix, M., Mignot, A. L.: Analyse numérique des équations différentielles. Paris: Masson 1989.
Dontchev, A., Lempio, F.: Difference methods for differential inclusions: a survey. SIAM Rev.34, 263–294 (1992).
Doitchinov, B. D., Veliov, V.: Parametrization of integrals of set-valued mappings and applications. J. Math. Anal. Appl.179, 483–499 (1993).
Ghizzetti, A.: Ricerche sui momenti di una funzione limitate compresa tra limiti assegnati. Atti della Reale Accademia d’Italia13, 1165–1199 (1942).
Hausdorff, F.: Momentprobleme für ein endliches Intervall. Math. Z.16, 220–248 (1923).
Isidori, A.: Nonlinear control systems: an introduction. Berlin, Heidelberg, New York, Tokyo: Springer 1989.
Jakubczyk, B., Sontag, E. D.: Controllability of nonlinear discrete-time systems: a Lie-algebraic approach. SIAM J. Contr. Opt.28, 1–33 (1990).
Lesiak, C., Krener, A. J.: The existence and uniqueness of Volterra series for nonlinear systems. IEEE Trans. Aut. Contr.23, 1090–1095 (1978).
Monaco, S., Normand-Cyrot, D.: On the sampling of a linear analytic system. Proceedings of the 24th IEEE Conference on Decision and Control3, 1457–1462 (1985).
Panasyuk, A. I.: Equations of attainable set dynamics, Part 1: Integral funnel equations. J. Optim. Theory Appl.64, 349–366 (1990).
Shohat, J. A., Tamarkin, J. D.: The problem of moments. Providence, AMS. 1970.
Veliov, V.: Second-order discrete approximations to strongly convex differential inclusions. Syst. Control Lett.13, 263–269 (1989).
Veliov, V.: Second-order discrete approximation to linear differential inclusions. SIAM J. Numer Anal.29, 439–451 (1992).
Veliov, V.: Approximation to differential inclusions by discrete inclusions. IIASA Working Paper (1989).
Wolensky, P. R.: The exponential formula for the reachable set of a Lipschitz differential inclusion. SIAM J. Contr. Opt.28, 1148–1161 (1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ferretti, R. High-order approximations of linear control systems via Runge-Kutta schemes. Computing 58, 351–364 (1997). https://doi.org/10.1007/BF02684347
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02684347