Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Variation-based approach to image segmentation

  • Scientific Papers
  • Published:
Science in China Series : Information Sciences Aims and scope Submit manuscript

Abstract

A new approach to image segmentation is presented using a variation framework. Regarding the edge points as interpolating points and minimizing an energy functional to interpolate a smooth threshold surface it carries out the image segmentation. In order to preserve the edge information of the original image in the threshold surface, without unduly sharping the edge of the image, a non-convex energy functional is adopted. A relaxation algorithm with the property of global convergence, for solving the optimization problem, is proposed by introducing a binary energy. As a result the non-convex optimization problem is transformed into a series of convex optimization problems, and the problem of slow convergence or nonconvergence is solved. The presented method is also tested experimentally. Finally the method of determining the parameters in optimizing is also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parker, J. R., Gray level thresholding in badly illuminated images, IEEE Trans. Pattern Anal. Mech. Intell., 1991, 13 (8): 813–819.

    Article  Google Scholar 

  2. Papamarkos, N., Gatos, B., A new approach for multilevel threshold selection, CVGIP-56, 1994, (5): 357–370.

  3. Davis, L. S., Rosenfeld, A., Weszka, J. S., Region extraction by averaging and thresholding, IEEE Trans. SMC, 1975, 5: 383–388.

    Google Scholar 

  4. Sahoo, P. K., Soltani, S., Wang, A. K. C., A survey of thresholding techniques, CVGIP, 1988, 41: 233–260.

    Google Scholar 

  5. Morel, J., Solimini, S., Variational Methods in Image Segmentation, Boston, MA: Birkhauser, 1995.

    Google Scholar 

  6. Teboul, S., Blance-Feraud, L., Aubert, G. et al., Variational approach for edge-preserving regularization using coupled PDE’s, IEEE Trans. on Image Processing, 1998, 7(3): 387–397.

    Article  Google Scholar 

  7. Geman, S., Reynolds, G., Constrained restoration and the recovery of discontinuities, IEEE Trans. Pattern Anal. Machine Intell., 1992, 14: 367–383.

    Article  Google Scholar 

  8. Aubert, G., Vese, L., A variational method in image recovery, SIAM J. Numer. Anal., 1997, 34: 1948–1979.

    Article  MATH  MathSciNet  Google Scholar 

  9. Charbonnier, P., Blance-Feraud, L., Aubert, G. et al., Deterministic edge-preserving regularization in computed image, IEEE Trans. Image Processing, 1997, 6(2): 298–311.

    Article  Google Scholar 

  10. Dobson, D. C., Vogel, C. R., Convergence of an iterative method for total variation denoising, SIAM J. Numer. Anal., 1997, 34(5): 1779–1791.

    Article  MATH  MathSciNet  Google Scholar 

  11. You, Y.-L., Xu, W. Y., Tannenbaum, A. et al., Behavioral analysis of anisotropic diffusion in image processing, IEEE Trans. Image Processing, 1996, 5 (11): 1539–1553.

    Article  Google Scholar 

  12. Conway, J. B., A Course in Functional Analysis, New York: Springer-Verlag, 1985.

    MATH  Google Scholar 

  13. Meyer, R. R., Sufficient conditions for the convergence of monotonic mathematical programming algorithms, J. Comput. Syst. Sci., 1976, 12: 108–121.

    MATH  Google Scholar 

  14. Luenberger, D. G., Introduction to Linear and Nonlinear Programming, Reading, MA: Addison-Wesley Publishing Company, 1973.

    MATH  Google Scholar 

  15. Luenberger, D. G., Linear and Nonlinear Programming, Reading, MA: Addison-Wesley, 1984.

    MATH  Google Scholar 

  16. Martens, J. B., The Hermite transform—Theory, IEEE Trans. ASSP, 1990, 38: 1595–1606.

    Article  MATH  Google Scholar 

  17. Chua, L. O., Yang, L., Cellular neural networks: theory and applications, IEEE Trans. Circuits and Systems, 1988, CAS-35: 1257–1290.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Yongping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zheng, N. & Zhao, R. Variation-based approach to image segmentation. Sci China Ser F 44, 259–269 (2001). https://doi.org/10.1007/BF02714714

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02714714

Keywords