Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

HGLM modelling of dropout process using a frailty model

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

We introduce a shared random-effect model, derived from frailty models to account for informative dropout. We extend the iterative weighted least squares algorithm for hierarchical generalized linear models to shared random-effect models. Monte-Carlo simulations are carried out to illustrate that the proposed method works well whether the random-effect distribution is correctly specified or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breslow, N.E. & Clayton, D.G. (1993), ‘Approximate inference in generalized linear mixed models’,Journal of the American Statistical Association 88, 9–25.

    MATH  Google Scholar 

  • Breslow, N.E. & Lin, X. (1995), ‘Bias correction in generalized linear mixed models with a single component of dispersion’,Biometrika 82, 81–91.

    Article  MathSciNet  Google Scholar 

  • Cox, D.R. (1972), ‘Regression models & life-tables (with discussion)’,Journal of the Royal Statistical Society B 34, 187–220.

    MathSciNet  MATH  Google Scholar 

  • Follmann, D.A. & Wu, M.C. (1995), ‘An approximate generalized linear model with random effects for informative missing data’,Biometrics 51, 151–168.

    Article  MathSciNet  Google Scholar 

  • Gueorguieva, R.V. (2001), ‘A multivariate generalized linear mixed model for joint modelling of clustered outcomes in the exponential family’,Statistical Modelling 1, 177–193.

    Article  Google Scholar 

  • Ha, I.D. & Lee, Y. (2003), ‘Estimating frailty models via Poisson hierarchical generalized linear models’,Journal of Computational and Graphical Statistics 12, 663–681.

    Article  MathSciNet  Google Scholar 

  • Ha, I.D., Lee, Y. & Song, J.K. (2002), ‘Hierarchical likelihood approach for mixed linear models with censored data’,Lifetime Data Analysis 8, 163–176.

    Article  MathSciNet  Google Scholar 

  • Hinde, J. (1982),Compound Poisson regression models, In R Gilchrist (Ed.), GLIM 82 New York, 109–121: Springer-Verlag.

    MATH  Google Scholar 

  • Kalbfleisch, J.D. & Prentice, R.L. (1973), ‘Marginal likelihoods based on Cox’s regression and life model’,Biometrika 60, 267–278.

    Article  MathSciNet  Google Scholar 

  • Lee, Y. & Nelder, J.A. (1996), ‘Hierarchical generalized linear models with discussion)’,Journal of the Royal Statistical Society B 58, 619–678.

    MathSciNet  MATH  Google Scholar 

  • Lee, Y. & Nelder, J.A. (2001), ‘Hierarchical generalized linear models: A synthesis of generalized linear models, random-effect model and structured dispersion’,Biometrika 88, 987–1006.

    Article  MathSciNet  Google Scholar 

  • Lee, Y. & Nelder, J.A. (2003), ‘Extended REML estimators’,Journal of Applied Statistics 30, 845–856.

    Article  MathSciNet  Google Scholar 

  • Lee, Y. & Nelder, J.A. (2004), ‘Conditional and marginal models: another view (with discussion)’, to appear in Statistical Science.

  • Liu, Q. & Pierce, D.A. (1993), ‘Heterogeneity in Mantel-Haenszel-type models’,Biometrika 80, 543–546.

    Article  MathSciNet  Google Scholar 

  • McCullagh, P. & Nelder, J.A. (1989),Generalized Linear Models 2nd edn, London: Chapman and Hall.

    Book  Google Scholar 

  • McCulloch, C.E. (1997), ‘Maximum likelihood algorithms for generalized linear mixed models’,Journal of the American Statistical Association 92, 162–170.

    Article  MathSciNet  Google Scholar 

  • Noh, M. & Lee, Y. (2004), ‘Review of estimating methods for binary data in generalised linear mixed models’, manuscript submitted for publication.

  • Pulkstenis, E.P., Ten Have, T. R. & Landis, J. R. (1998), ‘Model for the Analysis of Binary Longitudinal Pain Data Subject to Informative Dropout Through Remedication’,Journal of the American Statistical Association 93, 438–450.

    Article  Google Scholar 

  • Ten Have, T. R., Kunselman, A.R., Pulkstenis, E. P. &, Landis, J.R. (1998), ‘Mixed effects logistic regression models for longitudinal binary response data with informative dropout’,Biometrics 54, 367–383.

    Article  Google Scholar 

  • Verbeke, G. & Lesaffre, E. (1997), ‘The effect of misspecifying the randomeffects distribution in linear mixed models for longitudinal data’,Computational Statistics and Data Analysis 23, 541–556.

    Article  MathSciNet  Google Scholar 

  • Wu, M.C. & Bailey, K.R. (1989), ‘Estimation and comparison of changes in the presence of informative right censoring: conditional linear model’,Biometrics 45, 939–955.

    Article  MathSciNet  Google Scholar 

  • Wu, M.C. & Carroll, R.J. (1988), ‘Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process’,Biometrics 44, 175–188.

    Article  MathSciNet  Google Scholar 

  • Yun, S. & Lee, Y. (2004), ‘Comparison of Hierarchical and Marginal Likelihood Estimators for Binary Outcomes’,Computational Statistics and Data Analysis 45, 639–650.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Roger Payne and Professor Thomas Ten Have for their helpful comments.

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by a grant of the Korea Health 21 R & D Project, Ministry of Health & Welfare, Republic of Korea. (01-PJ1-PG3-51200-0002).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Noh, M. & Ryu, K. HGLM modelling of dropout process using a frailty model. Computational Statistics 20, 295–309 (2005). https://doi.org/10.1007/BF02789705

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789705

Keywords