Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

How good is the quenched approximation of QCD?

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The quenched approximation for QCD is, at present and in the foreseeable future, unavoidable in lattice calculations with realistic choices of the lattice spacing, volume and quark masses. In this talk, I review an analytic study of the effects of quenching based on chiral perturbation theory. Quenched chiral perturbation theory leads to quantitative insight on the difference between quenched and unquenched QCD, and reveals clearly some of the diseases which are expected to plague quenched QCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Sharpe, inThe Fermilab Meeting, 7th meeting of the DPF, eds. C.H. Albright, P.H. Kasper, R. Raja and J. Yoh, World Scientific, 1993.

  2. P.B. Mackenzie, preprint FERMILAB-CONF-93-343-T, to be published in the proceedings of the 16th International Symposium on Lepton and Photon Interactions, 1993, hep-ph/9311242; A.S. Kronfeld and P.B. Mackenzie, Ann. Rev. Nucl. Part. Phys.43 (1993) 793.

  3. Lattice’93, proceedings of the International Symposium on Lattice Field Theory, Dallas, Texas, 1993.

  4. H. Hamber and G. Parisi, Phys. Rev. Lett.47 (1981) 1792; E. Marinari, G. Parisi and C. Rebbi, Phys. Rev. Lett.47 (1981) 1795; D.H. Weingarten, Phys. Lett.109B (1982) 57.

    Article  ADS  Google Scholar 

  5. S.R. Sharpe, Phys. Rev.D41 (1990) 3233; Nucl. Phys.B (Proc. Suppl.)17 (1990) 146; G. Kilcupet al., Phys. Rev. Lett.64 (1990) 25; S.R. Sharpe, DOE/ER/40614-5, to be published inStandard Model, Hadron Phenomenology and Weak Decays on the Lattice, ed. G. Martinelli, World Scientific.

    Article  ADS  Google Scholar 

  6. C.W. Bernard and M.F.L. Golterman, Phys. Rev.D46 (1992) 853; Nucl. Phys.B (Proc. Suppl.)26 (1992) 360.

    Article  ADS  Google Scholar 

  7. S.R. Sharpe, Phys. Rev.D46 (1992) 3146; Nucl. Phys.B (Proc. Suppl.)30 (1993) 213.

    Article  ADS  Google Scholar 

  8. C.W. Bernard and M.F.L. Golterman, Nucl. Phys.B (Proc. Suppl.)30 (1993) 217.

    Article  Google Scholar 

  9. J. Gasser and H. Leutwyler, Phys. Lett.184B (1987) 83, Phys. Lett.188B (1987) 477, and Nucl. Phys.B307 (1988) 763; H. Leutwyler, Nucl. Phys.B (Proc. Suppl.)4 (1988) 248 and Phys. Lett.189B (1987) 197; H. Neuberger, Nucl. Phys.B300 (1988) 180; P. Hasenfratz and H. Leutwyler Nucl. Phys.B343 (1990) 241.

    ADS  Google Scholar 

  10. J.N. Labrenz and S.R. Sharpe, preprint UW-PT-93-07, to be published in the proceedings of the International Symposium on Lattice Field Theory, Dailas, Texas, 1993, hep-lat/9312067.

  11. A. Morel, J. Physique48 (1987) 111.

    Google Scholar 

  12. For a description of the properties of graded groups, see for example, B. DeWitt,Supermanifolds, Cambridge, 1984.

  13. J. Gasser and H. Leutwyler, Nucl. Phys.B250 (1985) 465.

    Article  ADS  Google Scholar 

  14. S. Weinberg, Physica96A (1979) 327.

    ADS  Google Scholar 

  15. Y. Kuramashi, M. Fukugita, H. Mino, M. Okawa and A. Ukawa, preprint KEK-CP-13, 1994; preprint KEK-CP-010, to be published in the proceedings of the International Symposium on Lattice Field Theory, Dallas, Texas, 1993, hep-lat/9312016.

  16. E. Witten, Nucl. Phys.B156 (1979) 269; G. Veneziano, Nucl. Phys.B159 (1979) 213.

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Hatsuda, Nucl. Phys.B329 (1990) 376; S.R. Sharpe, private communication.

    Article  ADS  Google Scholar 

  18. E. Jenkins and A. Manohar, Phys. Lett.255B (1991) 558; E. Jenkins, Nucl. Phys.B368 (1992) 190.

    ADS  Google Scholar 

  19. V. Bernard, N. Kaiser and U. Meissner, Z. Phys.C60 (1993) 111.

    Article  ADS  Google Scholar 

  20. F. Butler, H. Chen, J. Sexton, A. Vaccarino and D. Weingarten, Phys. Rev. Lett.70 (1993) 2849; Nucl. Phys.B (Proc. Suppl)30 (1993) 377.

    Article  ADS  Google Scholar 

  21. M.F.L. Golterman and N.D. Hari Dass, in preparation.

  22. C.W. Bernard and M.F.L. Golterman, Phys. Rev.D49 (1994) 486; preprint WASH-U-HEP-93-61, to be published in the proceedings of the International Symposium on Lattice Field Theory, Dallas, Texas, 1993, hep-lat/9311070.

    Article  ADS  Google Scholar 

  23. R. Gupta, A. Patel and S.R. Sharpe, Phys. Rev.D48 (1993) 388.

    Article  ADS  Google Scholar 

  24. Y. Kuramashi, M. Fukugita, H. Mino, M. Okawa and A. Ukawa, Phys. Rev. Lett.71 (1993) 2387.

    Article  ADS  Google Scholar 

  25. C.W. Bernard, M.F.L. Golterman, J.N. Labrenz, S.R. Sharpe and A. Ukawa, preprint Wash. U. HEP/93-62, to be published in the proceedings of the International Symposium on Lattice Field Theory, Dallas, Texas, 1993.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golterman, M.F.L. How good is the quenched approximation of QCD?. Pramana - J. Phys. 45 (Suppl 1), 141–154 (1995). https://doi.org/10.1007/BF02907971

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02907971

Keywords