Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On graphsG for which all large trees areG-good

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

LetG be a graph satisfying x(G) = k. The following problem is considered: WhichG have the property that, if n is large enough, the Ramsey numberr(G, T) has the value (k — 1)(n — 1) + 1 for all treesT onn vertices? It is shown thatG has this property if and only if for somem, G is a subgraph of bothL k,m andM K.m , whereL k,m andM k,m are two particulark-chromatic graphs. Indeed, it is shown thatr(L k,m ,M k,m ,T n ) = (k — 1)(n — 1) + 1 whenn is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Burr, S.A.: Ramsey numbers involving graphs with long suspended paths. J. London Math. Soc. (2)24, 405–413 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burr, S.A.: An inequality involving the vertex arboricity and edge arboricity of a graph. J. Graph Theory10, 403–404 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burr, S.A., Erdös, P., Faudree, R.J., Rousseau,C.C., Schelp, H.: Ramsey numbers for the pair sparse graph-path or cycle. Trans. Am. Math. Soc.269, 501–512 (1982)

    Article  MATH  Google Scholar 

  4. Burr, S.A., Erdös, P, Faudree, R.J., Rousseau, C.C., Scheip, R.H., Gould, R.J., Jacobson, M.S.: Goodness of trees for generalized books. Graphs Comb.3, 1–6 (1987)

    Article  MATH  Google Scholar 

  5. Chvátal, V.: Tree-Complete graph Ramsey numbers. J. Graph Theory1, 93 (1977)

    Article  MathSciNet  Google Scholar 

  6. Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs, III. Small off-diagonal numbers. Pacific J. Math.41, 335–345 (1972)

    MATH  MathSciNet  Google Scholar 

  7. Erdös, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H.: Multipartite graph-sparse graph Ramsey numbers. Combinatorica5, 311–318 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Halin, R.: Unterteilungen Vollstäindinger Graphen in Graphen mit Unendlicher Chro- matischer Zahl. Abh. Math. Semin. Univ. Hamb.31, 156–165 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hall, P.: On representatives of subsets. J. London Math. Soc.10, 26–30 (1935)

    Article  MATH  Google Scholar 

  10. Harary, F.: Graph theory Reading: Addison-Wesley 1969

  11. Simonovits, M.: A method for solving extremal problems in graph theory. In: P. Erdös and G. Katona, Theory of graphs, Proc. Colloq. Tihany, 1966. Academic 1968 pp 279- 319

  12. Szekeres, G., Wilf, H.S.: An inequality for the chromatic number of a graph. J. Comb. Theory4, 1–3 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by ONR Grant N00014-85-K-0704 and PSC-CUNY Grant 6-65227.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burr, S.A., Faudree, R.J. On graphsG for which all large trees areG-good. Graphs and Combinatorics 9, 305–313 (1993). https://doi.org/10.1007/BF02988318

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988318

Keywords