Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Influence of white matter inhomogeneous anisotropy on EEG forward computing

  • Scientific Papers
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In this paper, we model the human head using the Volume and Wang’s constraint methods, and study the inhomogeneous anisotropic conductivity for white matter (WM) using finite element method (FEM). To represent the WM accurately, the conductivity ratio approximation (CRA) and statistical conductivity approximation (SCA) techniques are applied to assign inhomogeneous anisotropic conductivity. This model is evaluated and compared with a homogeneous isotropic model and a homogeneous anisotropic model. The results show that the effects of inhomogeneous anisotropic conductivity of WM on the scalp EEG are significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kervinen, M., Vauhkonen, M. and Karjalainen, P. A.,New Continuous Current density Model for EEG, Biosignal Analysis and Medical Imaging Group, University of Kuopio, Finland (http://bsamig.uku.fi/pdf/CDmanuscript.pdf).

  2. Wen, P.,Human Head Modelling and Computation for the EEG Forward Problem, PhD dissertation, The Flinders University of South Australia, Australia, 2000.

    Google Scholar 

  3. Muravchik, C. and Nehorai, A.,EEG/MEG Error Bounds for a Static Dipole Source with a Realistic Head Model, IEEE Transactions on Biomedical Engineering, 49(3), 470–483, 2001.

    Google Scholar 

  4. Xie, Y., Yuan, J., Ma, X. and Guan, X.,Calculating of EEG problems with Anisotropic Conducting Media by the Finite Volume Method, IEEE Transactions on Magnetics, 37(5), 3749–3752, 2001.

    Article  Google Scholar 

  5. Hallez, H., Hese, V., Vanrumste, B., Boon, P., Asseler, Y. D., Lemahieu, I. and Walle, R. Van de,Dipole Localization Errors due to not Incorporating Layers with Anisotropic Conductivities: Simulation Study in a Spherical Head Model, International Journal of Bioelectromagnetism (IJBEM), 7(1), 134–137, 2005.

    Google Scholar 

  6. Wolters, C. H.,Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain, PhD dissertation, University of Leipzig, France, 2003.

    Google Scholar 

  7. Wolters, C. H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M. A. and MacLeod, R. S.,Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling, Journal of NeuroImage, Elsevier, 30, 813–826, 2006.

    Article  CAS  Google Scholar 

  8. Marin, G., Guerin, C., Baillet, S., Garnero, L. and Meunier, G.,Influence of Skull Anisotropy for the Forward and Inverse Problem in EEG: Simulation Studies using FEM on Realistic Head Models, Journal of Brain Mappings, 6, 250–269, 1998.

    Article  CAS  Google Scholar 

  9. Nicolas, C., Xavier, F., Bernard, D., Bernard, R., Jean, P. M. and Pierre, C.,Effects of Skull Thickness, Anisotropy, and Inhomogeneity on Forward EEG/ERP Computations Using Spherical Three-Dimensional Resistor Mesh Model, Journal of Human Brain Mapping, 21, 86–97, 2004.

    Article  Google Scholar 

  10. Bruno, P. , Hyttinen J., Inchingolo, P. , Magrofuoco, A. , Mininel, S. and Vatta, F. ,A FDM anisotropic formulation for EEG simulation, IEEE EMBS Annual International Conference, New York, USA, 1121–1125, 2006.

  11. Li, L., Wang, K., Zhu, S., Mueller, K., Lim, K., Liu, Z. and He, B.,A Study of White Matter Anisotropic conductivity on EEG Forward Solutions, Proceedings of Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging (NFSI & ICFBI-IEEE explorer), 130–132, 2007.

  12. Gullmar, D., Haueisen, J., Wiselt, M., Giebler, F., Flemming, L., Anwander, A. Thomas, R. K., Wolters, C. H., Dumpelmann, M., David, S. T. and Jurgen, R. R.,Influence of Anisotropic Conductivity on EEG source Reconstruction: Investigations in a Rabbit Model, IEEE Transactions on Biomedical Engineering, 53(9), 1841–1850, 2006.

    Article  PubMed  Google Scholar 

  13. Gullmar, D., Jurgen, R. R. and Haueisen, J.,Influence of anisotropic conductivity on EEG forward and inverse solution, Proceedings of Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging (NFSI & ICFBI-IEEE explorer), 124–126, 2007.

  14. Hallez, H., Vanrumste, B., Hese, P. V., Delputte, S., and Lemahieu, I.,Dipole estimation errors due to differences in modelling anisotropic conductivities in realistic head models for EEG source analysis, Journal of Physics in Medicine and Biology, IOP Publishing, 53, 1877–1894, 2008.

    Google Scholar 

  15. Wang, Y., David, R. H. and Kim, Y.,An Investigation of the Importance of Myocardial Anisotropy in Finite-Element Modeling of the Heart:Methodology and Application to the Estimation of Defibrillation Efficacy, IEEE Transactions on Biomedical Engineering, 48(12), 1377–1389, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Kim, S., Kim, T. S., Zhou, Y. and Singh, M.,Influence of Conductivity Tensors in the Finite Element Model of the Head on the Forward Solution of EEG, IEEE conference on Nuclear Science Symposium Conference Record, 1892–1896, 2001.

  17. Wen, P. and Li, Y.,EEG human head modelling based on heterogeneous tissue conductivity, Australasian Physical & Engineering Sciences in Medicine, 29(3), 235–240, 2006.

    Article  CAS  Google Scholar 

  18. Marc, A. C., John, L. L. and Solomon, R. E.,A Three-Dimensional Finite Element Model of Human Transthoracic Defibrillation: Paddle Placement and Size, IEEE Transactions on Biomedical Engineering, 42(6), 572–578, 1995.

    Article  Google Scholar 

  19. Klepfer, R. N., Johnson, C. R. and Robert, S. M.,The effects of Inhomogeneities and Anisotropies on Electrocardiographic Fields: A 3-D Finite -element Study, IEEE Transactions on Biomedical Engineering, 44(8), 706–719, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Yan, Y., Nunez, P. L. and Hart, R. T.,Finite-element model of the human head: scalp potentials due to dipole sources, Journal of Medical & Biological Engineering & Computing, 29, 475–481, 1991.

    Article  CAS  Google Scholar 

  21. Basser, P., Mattiello, J. and LeBihan, D.,MR diffusion tensor spectroscopy and imaging, Biophysical Journal, 66, 259–267, 1994.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, X., Wang, M., Gao, W. and Liu, H.,White Matter Fiber Tracking Method by Vector Interpolation with Diffusion Tensor Imaging Data in Human Brain, Proceedings of the IEEE Engineering in Medicine and Biology 27 th Annual Conference, 5786–5789, 2005.

  23. Hauseisen, J., Ramon, C., Eiselt, M., Brauer, H. and Nowak, H.,Influence of Tissue Resistivities on Neuromagnetic Fields and Electric Potentials studied with a Finite Element Model of the Head, IEEE Transactions on Biomedical Engineering, 44(8), 727–735, 1997.

    Article  Google Scholar 

  24. Shimony, J. S., McKinstry, R., Akbudak, E., Aronovitz, J. A., Snyder, A. Z., Lori, N. F., Cull, T. S. and Conturo, T.E.,Quantitative diffusion-tensor anisotropy brain MR imaging: Normative human data and anatomical analysis, Radiology, 212, 770–784, 1999.

    CAS  PubMed  Google Scholar 

  25. http://en.wikipedia.org/wiki/Rayleigh_distribution

  26. Rodney, F. W., Gareth, J. J. and Kenneth, V. L.,Monte Carlo Simulation and Random Number Generation, IEEE Journal on Selected Areas in Communications, 6(1), 58–66, 1988.

    Article  Google Scholar 

  27. Baillet, S., Mosher, J. C. and Leahy R. M.,Electromagnetic Brain Imaging using Brainstorm, IEEE International Symposium on Biomedical Engineering: Macro to Nano, 652–655, 2004.

  28. Meijis, J.W., Weier, O. W., Peters, M. J. and Oosterom, A. van,On the numerical accuracy of the boundary element method, IEEE Transactions on Biomedical Engineering, 36(10), 1038–1049, 1989.

    Article  Google Scholar 

  29. The Matlab, Mathworks limited.

  30. http://en.wikipedia.org/wiki/Cerebral_cortex

  31. Wolters, C. H., Anwander, A., Tricoche, X., Lew, B., and Johnson, C. R.,Influence of Local and Remote White Matter Conductivity Anisotropy for a Thalamic Source on EEG/MEG Field and Return Current Computation, International Journal of Bioelectromagnetism (IJEM), 7(1), 203–206, 2005.

    Google Scholar 

  32. Noirhomme, Q., Kitney, R. I., and Macq, B.,Single-Trial EEG Source Reconstruction for Brain-Computer Interface, IEEE Transactions on Biomedical Engineering, 55(5), 1592–1601, 2008.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bashar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashar, R., Li, Y. & Wen, P. Influence of white matter inhomogeneous anisotropy on EEG forward computing. Australas. Phys. Eng. Sci. Med. 31, 122–130 (2008). https://doi.org/10.1007/BF03178586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178586

Key words