- Open access
- Published:
Computational aspects of the Helly property: a survey
Journal of the Brazilian Computer Society volume 12, pages 7–33 (2006)
Abstract
In 1923, Eduard Helly published his celebrated theorem, which originated the well known Helly property. Say that a family of subsets has the Helly property when every subfamily of it, formed by pairwise intersecting subsets, contains a common element. There are many generalizations of this property which are relevant to some parts of mathematics and several applications in computer science. In this work, we survey computational aspects of the Helly property. The main focus is algorithmic. That is, we describe algorithms for solving different problems arising from the basic Helly property. We also discuss the complexity of these problems, some of them leading to NP-hardness results.
References
M. O. Albertson and K. L. Collins. Duality and perfection for edges in cliques.Journal of Combinatorial Theory, Series B, 36:298–309, 1984.
L. Alcón, L. Faria, C. M. H. Figueiredo, and M. Gutierrez. Clique graphs is NP-complete.Manuscript, 2006.
L. Alcón and M. Gutierrez. Cliques and extended triangles. A necessary condition for planar clique graphs.Discrete Applied Mathematics, 141:3–17, 2004.
N. Alon and D. Kleitman. Piercing convex sets and the Hadwiger-Debrunner (p,q)-problem.Advances in Mathematics, 96:103–112, 1992.
N. Amenta. Helly theorems and generalized linear programming. InSymposium on Computational Geometry, pages 63-72, 1993.
H-J Bandelt, M. Farber, and P. Hell. Absolute reflexive retracts and absolute bipartite retracts.Discrete Applied Mathematics, 44(1–3):9–20, 1993.
H. J. Bandelt and E. Pesch. Dismantling absolute retracts of reflexive graphs.European Journal of Combinatorics, 10:210–220, 1989.
H-J Bandelt and E. Pesch. Efficient characterizations of n-chromatic absolute retracts.Journal on Combinatorial Theory Series B, 53:5–31, 1991.
A. Barg, G. Cohen, S. Encheva, G. Kabatiansky, and G. Zémor. A hypergraph approach to the identifying parent property: The case of multiple parents.SIAM Journal on Discrete Mathematics, 14(3):423–431, 2001.
M. Benke. Efficient type reconstruction in the presence of inheritance. In A. M. Borzyszkowski and S. Sokolowski, editors,Proceedings of Mathematical Foundations of Computer Science (MFCS ’93), volume 711 ofLNCS, pages 272–280, Berlin, Germany, 1993. Springer.
C. Berge.Graphes et Hypergraphes. Dunod, Paris, 1970. (Graphs and Hypergraphs, North-Holland, Amsterdam, 1973, revised translation).
C. Berge.Hypergraphs. Gauthier-Villars, Paris, 1987.
C. Berge and P. Duchet. A generalization of Gilmore’s theorem. In M. Fiedler, editor,Recent Advances in Graph Theory, pages 49–55. Acad. Praha, Prague, 1975.
B. Bollobás.Combinatorics. Cambridge University Press, Cambridge, 1986.
A. Bondy, G. Durán, M. C. Lin, and J. L. Szwarcfiter. Self-clique graphs and matrix permutations.J. Graph Theory, 44(3):178–192, 2003.
F. Bonomo. Self-clique Helly circular-arc graphs.Discrete Mathematics, 306:595–597, 2006.
F. Bonomo, M. Chudnovski, and G. Durán. Partial characterizations of clique-perfect graphs.Eletronic Notes on Discrete Mathematics, 19:95–101, 2005.
C. F. Bornstein and J. L. Szwarcfiter. On clique convergent graphs.Graphs and Combinatorics, 11:213–220, 1995.
A. Brandstädt, V. Chepoi, and F. Dragan. The algorithmic use of hypertree structure and maximum neighbourhood orderings.Discrete Applied Mathematics, 82(1–3):43–77, 1998.
A. Brandstädt, V. Chepoi, F. Dragan, and V. Voloshin. Dually chordal graphs.SIAM Journal on Discrete Mathematics, 11(3):437–455, aug 1998.
A. Brandstädt, V. B. Le, and J. P. Spinrad.Graph classes: A survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
A. Bretto, J. Azema, H. Cherifi, and B. Laget. Combinatorics and image processing.Grafical Models and Image Processing, 59(5):265–277, 1997.
A. Bretto, S. Ubéda, and J. Žerovnik. A polynomial algorithm for the strong Helly property.Information Processing Letters, 81:55–57, 2002.
P. L. Butzer, R. J. Nessel, and E. L. Stark.Eduard Helly (1884–1943): In memoriam, volume 7. Resultate der Mathematik, 1984.
M. R. Cerioli.Edge-clique Graphs (in portuguese). Ph.D. Thesis, COPPE - Sistemas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1999.
S. A. Cook. The complexity of theorem-proving procedures.Proc. 3rd Ann. ACM Symp. on Theory of Computing Machinery, New York, pages 151-158, 1971.
L. Danzer, B. Grünbaum, and V. L. Klee. Helly’s theorem and its relatives. InProc. Symp. on Pure Math AMS, volume 7, pages 101-180, 1963.
M. C. Dourado, P. Petito, and R. B. Teixeira. Helly property and sandwich graphs. InProceedings of ICGT 2005, volume 22 ofEletronic Notes in Discrete Mathematics, pages 497-500. Elsevier B.V., 2005.
M. C. Dourado, F. Protti, and J. L. Szwarcfiter. On the Helly defect of a graph.Journal of the Brazilian Computer Society, 7(3):48–52, 2001.
M. C. Dourado, F. Protti, and J. L. Szwarcfiter. Characterization and recognition of generalized clique-Helly graphs. In J. Hromkovič, M. Nagl, and B. Westfechtel, editors,Proceedings WG 2004, volume 3353 ofLecture Notes in Computer Science, pages 344-354. Springer-Verlag, 2004.
M. C. Dourado, F. Protti, and J. L. Szwarcfiter. The Helly property on subfamilies of limited size.Information Processing Letters, 93:53–56, 2005.
M. C. Dourado, F. Protti, and J. L. Szwarcfiter. On Helly hypergraphs with predescribed intersection sizes. Submitted, 2005.
M. C. Dourado, F. Protti, and J. L. Szwarcfiter. Complexity aspects of generalized Helly hypergraphs.Information Processing Letters, 99:13-18, 2006.
M. C. Dourado, F. Protti, and J. L. Szwarcfiter. On the strongp-Helly property.Discrete Applied Mathematics, to appear, 2006.
F. F. Dragan.Centers of Graphs and the Helly Property (in russian). Ph. D. Thesis, Moldava State University, Chisinău, 1989.
F. F. Dragan, C. F. Prisacaru, and V. D. Chepoi. Location problems in graphs and the Helly property.Diskretnája Matematica, 1992.
P. Duchet. Proprieté de Helly et problèmes de représentations. InColloquium International CNRS 260, Problémes Combinatoires et Théorie de Graphs, pages 117-118, Orsay, France, 1976. CNRS.
P. Duchet. Hypergraphs. In R. L. Graham, M. Grötschel, and L. Lovász, editors,Handbook of Combinatorics, volume 1, pages 381-432, Amsterdam-New York-Oxford, 1995. Elsevier North-Holland.
P. Duchet and H. Meyniel. Ensembles convexes dans les graphes. I: Théorèmes de Helly et de Radon pour graphes et surfaces.European Journal of Combinatorics, 4:127–132, 1983.
G. Durán. Some new results on circle graphs.Matemática Contemporânea, 25:91–106, 2003.
G. Durán, A. Gravano, M. Groshaus, F. Protti, and J. L. Szwarcfiter. On a conjecture concerning Helly circle graphs.Pesquisa Operacional, pages 221-229, 2003.
G. Duran and M. C. Lin. Clique graphs of helly circular arc graphs.Ars Combinatoria, 60:255–271, 2001.
J. Eckhoff. Helly, Radon, and Carathéodory type theorems. InHandbook of Convex Geometry, pages 389-448. North-Holland, 1993.
F. Escalante. Ü ber iterierte clique-graphen.Abhandlungender Mathematischen Seminar der Universität Hamburg, 39:59–68, 1973.
R. Fagin. Acyclic database schemes of various degrees: A painless introduction. In G. Ausiello and M. Protasi, editors,Proceedings of the 8th Colloquium on Trees in Algebra and Programming (CAAP’83), volume 159 of LNCS, pages 65-89, L’Aquila, Italy, mar 1983. Springer.
R. Fagin. Degrees of acyclicity for hypergraphs and relational database systems.Journal of the Association for Computing Machinery, 30:514–550, 1983.
C. Flament. Hypergraphes arborés.Discrete Mathematics, 21:223–226, 1978.
F. Gavril. Algorithms on circular-arc graphs.Networks, 4:357–369, 1974.
M. C. Golumbic and R. E. Jamison. The edge intersection graphs of paths in a tree.Journal of Combinatorial Theory, Series B, 38:8–22, 1985.
M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems.Journal of Algorithms, 19:449–473, 1995.
J. E. Goodman, R. Pollack, and R. Wenger. Geometric transversal theory. In J. Pach, editor,New Trends in Discrete and Computational Geometry, number 163–198. Springer-Verlag, Berlin, 1993.
M. Groshaus and J. L. Szwarcfiter. Hereditary Helly classes of graphs. Submitted, 2005.
M. Groshaus and J. L. Szwarcfiter. Biclique-Helly graphs. Submitted, 2006.
M. Groshaus and J. L. Szwarcfiter. The biclique matrix of a graph. In preparation, 2006.
R. C. Hamelink. A partial characterization of clique graphs.Journal of Combinatorial Theory, 5:192–197, 1968.
P. Hell.Rétractions de graphes. Ph.D. Thesis, Université de Montreal, 1972.
E. Helly. Ueber mengen konvexer koerper mit gemeinschaftlichen punkter, Jahresber.Math. Verein., 32:175–176, 1923.
R. E. Jamison. Partition numbers for trees and ordered sets.Pacific Journal of Mathematics, 96:115–140, 1981.
F. Larrión, C. P. de Mello, A. Morgana, V. Neumann-Lara, and M. A. Pizaña. The clique operator on cographs and serial graphs.Discrete Mathematics, 282(1–3):183–191, 2004.
F. Larrión and V. Neumann-Lara. A family of clique divergent graphs with linear growth.Graphs and Combinatorics, 13:263–266, 1997.
F. Larrión, V. Neumann-Lara, and M. A. Pizaña. Clique divergent clockwork graphs and partial orders.Discrete Applied Mathematics, 141(1–3):195–207, 2004.
F. Larrión, V. Neumann-Lara, and M. A. Pizaña. On expansive graphs.Manuscript, 2005.
F. Larrión, V. Neumann-Lara, and M. A. Pizaña. Graph relations, clique divergence and surface triangulations.Journal of Graph Theory, 51:110–122, 2006.
F. Larrión, V. Neumann-Lara, M. A. Pizaña, and T. D. Porter. A hierarchy of self-clique graphs.Discrete Mathematics, 282(1–3):193–208, 2004.
M. C. Lin and J. L. Szwarcfiter. Characterizations and linear time recognition for Helly circular-arc graphs. In12th Annual International Computing and Combinatorics Conference, Lecture Notes in Computer Science, to appear, Taipei, Taiwan, 2006.
L. Lovász. Normal hypergraphs and the perfect graph conjecture.Discrete Mathematics, 2:253–267, 1972.
L. Lovász.Combinatorial Problems and Exercises. North-Holland, Amsterdam, 1979.
L. Lovász. Perfect graphs. In R. W. Beineke and R. J. Wilson, editors,Selected Topics in Graph Theory, pages 55–87. Academic Press, New York, N. Y., 1983.
C. L. Lucchesi, C. P. Mello, and J. L. Szwarcfiter. On clique-complete graphs.Discrete Mathematics, 183:247–254, 1998.
T. A. Mckee and F. R. McMorris.Topics in Intersection Graph Theory. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, PA, 1999.
J. W. Moon and L. Moser. On cliques in graphs.Israel Journal of Mathematics, 3:23–28, 1965.
V. Neumman-Lara. A theory of expansive graphs.Manuscript, 1995.
T. Nishizeki and N. Chiba.Planar Graphs: Theory and Algorithms. Annals of Discrete Mathematics 32, North Holland, Amsterdam, New York, Oxford, Tokyo, 1988.
M. C. Paul and S. H. Unger. Minimizing the number of states in incompletely specified sequential switching functions.IRE Transactions Eletronic Computers EC-8, pages 356-367, 1959.
M. A. Pizaña. The icosahedron is clique divergent.Discrete Mathematics, 262(1–3):229–239, 2003.
E. Prisner. Hereditary clique-Helly graphs.Journal of Combinatorial Mathematics and Combinatorial Computing, 14:216–220, 1993.
E. Prisner.Graph Dynamics. Pitman Research Notes in Mathematics, Longman, 1995.
E. Prisner. Bicliques in graphs I: Bounds on their number.Combinatorica, 20(1):109–117, 2000.
T. M. Przytycka, G. Davis, N. Song, and D. Durand. Graph theoretical insights into evolution of multidomain proteins. InRECOMB 2005 (LNBI, vol. 3500), pages 311-325, 2005.
F. S. Roberts and J. H. Spencer. A characterization of clique graphs.Journal of Combinatorial Theory, Series B, 10:102–108, 1971.
P. J. Slater. A characterization of SOFT hypergraphs.Canadian Mathematical Bulletin, 21:335–337, 1978.
J. P. Spinrad.Efficient Graph Representation. American Mathematics Society, Providence, RI, 2003.
J. L. Szwarcfiter. Recognizing clique-Helly graphs.Ars Combinatoria, 45:29–32, 1997.
J. L. Szwarcfiter. A survey on clique graphs. In B. A. Reed and C. L. Sales, editors,Recent Advances in Algorithms and Combinatorics, pages 109–136. Springer-Verlag, New York, N. Y., 2003.
J. L. Szwarcfiter and C. F. Bornstein. Clique graphs of chordal and path graphs.SIAM Journal on Discrete Mathematics, 7(2):331–336, may 1994.
S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating all the maximal independent sets.SIAM Journal on Computing, 6(3):505–517, sep 1977.
Zs. Tuza.Extremal Problems on Graphs and Hypergraphs. PhD Thesis, Acad. Sci., Budapeste, 1983. [Hungarian].
Zs. Tuza. Helly-type hypergraphs and Sperner families.Europ. J. Combinatorics, 5:185–187, 1984.
Zs. Tuza. Helly property in finite set systems.Journal of Combinatorial Theory, Series A, 62:1–14, 1993.
Zs. Tuza. Extremal bi-Helly families.Discrete Mathematics, 213:321–331, 2000.
V. I. Voloshin. On the upper chromatic number of a hypergraph.Australasian Journal of Combinatorics, 11:25–45, 1995.
W. D. Wallis and G.-H. Zhang. On maximal clique irreducible graphs.Journal of Combinatorial Mathematics and Combinatorial Computing, 8:187–193, 1990.
Author information
Authors and Affiliations
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Dourado, M.C., Protti, F. & Szwarcfiter, J.L. Computational aspects of the Helly property: a survey. J Braz Comp Soc 12, 7–33 (2006). https://doi.org/10.1007/BF03192385
Issue Date:
DOI: https://doi.org/10.1007/BF03192385