Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A multimodal hand-based verification system with an aliveness-detection module

Un système multimodal de vérification basé sur la main, accompagné d’un module de détection du caractère vivant

  • Multimodal Biometrics
  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

This paper presents a multimodal biometrie verification system based on the following hand features: palmprint, four digitprints and four fingerprints. The features are obtained using the Karhunen-Loève transform based approach, and information fusion at the matching-score level was applied. We experimented with different resolutions of the regions of interest, different numbers of features and several normalization and fusion techniques at the matching-score level. To increase the reliability of the system to spoof attacks we included an aliveness-detection module based on thermal images of the hand dor sa. The verification performance when using a system configuration with optimum parameters, i.e., resolution, number of features, normalization and fusion technique, showed an equal error rate (EER) of 0.0020%, which makes the system appropriate for the implementation of high-security biometric systems.

Résumé

Dans ce papier est présenté un système de vérification biométrique multimodal qui repose sur les éléments de la main suivants: empreinte palmaire, empreintes de quatre doigts et quatre empreintes digitales. Les caractéristiques sont obtenues grâce à une approche reposant sur la transformée de Karhunen-Loève et une fusion d’information au niveau des degrés de pertinence (ORES) est effectuée. Les expériences reflètent différentes résolutions des régions d’intérêt, un nombre différent de caractéristiques et plusieurs techniques de normalisation et de fusion au niveau des scores. Pour augmenter la résistance du système aux imitations nous avons inclus un module qui permet de détecter si la main est vivante en utilisant des images thermiques du dos de la main. Les performances en vérification lorsqu On utilise un système optimal en terme de résolution, nombre de caractéristiques extraites, techniques de normalisation et fusion présentent un taux d’égale erreur (EER) de 0.0020%, ce qui en fait un système approprié à l’implementation de systèmes biométriques de haute sécurité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain A.K., Ross A., Prabhakar S., An Introduction to Biometric Recognition, IEEE Transaction on Circuits and Systems for Video Technology, Special Issue on Image- and Video-Based Biometrics, 14, no 1, pp. 4–20, Jan. 2004.

    Google Scholar 

  2. Bolle R.M., Connell J.H., Pankati S., Ratha N.K., Senior A.W., Guide to Biometrics, Springer-Verlag, 2004.

    Google Scholar 

  3. Kolence K. W., Kiviat P. J., Software Unit Profiles and Kiviat Figures, Performance Evaluation Review, 2, no 3, pp. 2–12, June 1973.

    Google Scholar 

  4. Jain A. K., Bolle R., Pankati S., (eds.), Biometrics, Personal Identification in Networked Society, Kluwer Academic Publisher, Norwell, Massachusetts, 1999.

    Google Scholar 

  5. Zhang D., Shu W., Two Novel Characteristics in Palmprint Verification: Datum Point Invariance and Line Feature Matching, Pattern Recognition, 32, no 4, pp. 691–702, April 1999.

    Google Scholar 

  6. Han C.C., Cheng H.L., Lin C.L., Fan K.C., Personal Authentication Using Palm-print Features, Pattern Recognition, 36, no 2, pp. 371–381, Feb. 2003.

    Google Scholar 

  7. Kumar A., Wong D.C.M., Shen H., Jain A.K., Personal Verification Using Palmprint and Hand Geometry Biometric, Proceedings of AVBPA, Guildford, UK, pp. 668–675, June 2003.

    Google Scholar 

  8. Zhang D., Kong W.K., You J., Wong M., On-line Palmprint Identification, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, no 9, pp. 1041–1050, Sept. 2003.

    Google Scholar 

  9. You J., Li W., Zhang D., Hierarchical Palmprint Identification via Multiple Feature Extraction, Pattern Recognition, 35, no 12, pp. 847–859, Dec. 2002.

    MATH  Google Scholar 

  10. Li W., Zhang D., Xu Z., Palmprint Identification by Fourier Transform, Int. J. of Pattern Recognition & Artificial Intelligence, 16, no 4, pp. 417–432, June 2002.

    Google Scholar 

  11. Zhang L., Zhang D., Characterization of Palmprints by Wavelet Signatures via Directional Context Modeling, IEEE Transaction on Systems, Man and Cybernetics, Part ?: Cybernetics, 34, no 3, pp. 1335–1347, June 2004.

    Google Scholar 

  12. Lu G., Zhang D., Wang K., Palmprint Recognition Using Eigenpalms Features, Pattern Recognition Letters, 24, no 9–10, pp. 1463–1467, June 2003.

    MATH  Google Scholar 

  13. Wu X., Zhang D., Wang K., Fisherpalms Based Palmprint Recognition, Pattern Recognition Letters, 24, no 15, pp. 2829–2838, Nov. 2003.

    Google Scholar 

  14. Connie T., Teoh A., Goh M., Ngo D., Palmhashing: a Novel Approach for Cancelable Biometrics, Information Processing Letters, 93, no 1, pp. 1–5, Jan. 2005.

    MathSciNet  Google Scholar 

  15. Pavesic N., Ribaric S., Ribaric D., Personal Authentication Using Hand-geometry and Palmprint Features — the State of the Art, Vielhauer C. et al. (Eds.): Biometrics: Challenges arising from theory to practice, Cambridge, pp. 17–26, Aug. 2004.

    Google Scholar 

  16. Maltoni D., Maio D., Jain A.K., Prabhakar S., Handbook of Fingerprint Recognition, Springer- Verlag, New York, 2003.

    MATH  Google Scholar 

  17. Ratha N.K., Karu K., Chen S., Jain A.K., A Real-Time Matching System for Large Fingerprint Databases, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, no 8, pp. 799–813, Aug. 1996.

    Google Scholar 

  18. Jain A.K., Hong L., Bolle R., On-line Fingerprint Verification, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, no 4, pp. 302–314, April 1997.

    Google Scholar 

  19. Jain A.K., Prabhakar S., Hong L., Pankanti S., Filterbank-based Fingerprint Matching, IEEE Transactions on Image Processing, 9, no 5, pp. 846–859, May 2000.

    Google Scholar 

  20. Willis A. J., Myers L., A Cost-Effective Fingerprint Recognition System for Use with Low-Quality Prints and Damaged Fingertips, Pattern Recognition, 34, no 2, pp. 255–270, Feb. 2001.

    MATH  Google Scholar 

  21. Jain A.K., Prabhakar S., Chen S., Combining Multiple Matchers for a High Security Fingerprint Verification System, Pattern Recognition Letters, 20, no 11–13, pp. 1371–1379, Nov. 1999.

    Google Scholar 

  22. Ross A., Jain A.K., Reisman J., A Hybrid Fingerprint Matcher, Pattern Recognition, 36, no 7, pp. 1661–1673, July 2003.

    Google Scholar 

  23. Tico M., Immonen E., Rämö P., Kuosmanen P., Saarinen J., Fingerprint Recognition Using Wavelet Features, Proceedings of the IEEE International Symposium on Systems and Circuits ISCAS 2001, Sydney, May 6–9, II, pp. 21–24, May 2001.

    Google Scholar 

  24. Lee C.J., Wang S.D., Fingerprint Feature Extraction Using Gabor Filters, Electronic Letters, 35, no 4, pp. 288–290, Feb. 1999.

    Google Scholar 

  25. Jin A.T.B., Ling D.N.C., Song O.T., An Efficient Fingerprint Verification System Using Integrated Wavelet and Fourier-Mellin Invariant Transform, Image and Vision Computing, 22, pp. 503–513, Jan. 2004.

    Google Scholar 

  26. Fbi, Fingerprint Identification: An Overview, 2000.

    Google Scholar 

  27. Hartman M., Compact Fingerprint Scanner Techniques, Proceedings of the Biometric Consortium Eight Meeting, San Jose, California, June 1996.

    Google Scholar 

  28. Ribaric S., Fratrić I., A Biometric Identification System Based on Eigenpalm and Eigenfinger Features, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, no 11, pp. 1698–1709, Nov. 2005.

    Google Scholar 

  29. Ribaric S., Fratrić I., An Online Biometrie Authentication System Based on Eigenfingers and Finger-geometry, Proc. 13th European Signal Processing Conference (CD), Antalya, Turkey, Sept. 2005.

    Google Scholar 

  30. Hong L., Jain A.K., Integrating Faces and Fingerprints for Personal Identification, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, no 12, pp. 1295–1307, Dec. 1998.

    Google Scholar 

  31. Jain A.K., Ross A., Multibiometric Systems, Communications of the ACM, Special Issue on Multimodal Interfaces, 47, no 1, pp. 34–40, Jan. 2004.

    Google Scholar 

  32. Ross A., Jain A.K., Information Fusion in Biometrics, Pattern Recognition Letters, 24, 13, pp. 2115–2125, Sept. 2003.

    Google Scholar 

  33. Kittler J., Hatef M., Duin R.P.W., Matas J., On Combining Classifiers, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, no 3, pp. 226–239, March 1998.

    Google Scholar 

  34. Kittler J., Alkoot F.M., Sum versus Vote Fusion in Multiple Classifier Systems, ieee Transactions on Pattern Analysis and Machine Intelligence, 25, no 1, pp. 110–115, Jan. 2003.

    Google Scholar 

  35. Shu W., Zhang D., Automated Personal Identification by Palmprint, Optical Engineering, 37, no 8, pp. 2359–2362, Aug. 1998.

    Google Scholar 

  36. Ribarić S., Ribarić D., Pavešić N., A Biometrie Identification System Based on the Fusion of Hand and Palm Features, Proceedings of the advent of biometrics on the Internet, Rome, Italy, pp. 79–82, Nov. 2002.

    Google Scholar 

  37. Ribaric S., Ribaric D., Paveić N., Multimodal Biometrie User-identification System for Network-based Applications, ieee Proceedings Vision, Image & Signal Processing, 150, no 6, pp. 409–416, Dec. 2003.

    Google Scholar 

  38. Kumar A., Wong D.C.M., Shen H.C., Jain A.K., Personal Verification Using Palmprint and Hand Geometry Biometrie, Proc. of 4th Int’l Conf. on Audio- and Video-Based Biometrie Person Authentication (AVBPA), Guildford, UK, pp. 668–678, June 2003.

    Chapter  Google Scholar 

  39. Schuckers S., Hornak L., Norman T., Derakhshani R., Parthasaradhi S., Issues for Liveness Detection in Biometrics, http://www.biometrics.org/htm/bc2002_sept_program/2_bc0130_DerakhshabiBrief.pdf.

  40. Schuckers S., Spoofing and Anti-Spoofing Measures, Information Security Technical Report, 7, no 4, pp 56–62, 2002.

    Google Scholar 

  41. Sandström M., Liveness Detection in Fingerprint Recognition Systems, M.Sc. Thesis lith-isy-ex-3557-2004, Institutionen för systemteknik, Linköping University, 2004.

    Google Scholar 

  42. Lin C.L., Fan K.C., Biometrie Verification Using Thermal Images of Palm-dorsa Vein Patterns, IEEE Transactions on Circuits and Systems for Video Technology, 14, no 2, pp. 199–213, Feb. 2004.

    Google Scholar 

  43. Crihalmeanu M.C., Adding Liveness Detection to the Hand Geometry Scanner, Master’s Thesis, West Virginia University, 2003.

    Google Scholar 

  44. Turk M., Pentland A., Eigenfaces for Recognition, Journal of Cognitive Neuroscience, 3, no 1, pp. 71–86, March 1991.

    Google Scholar 

  45. Murakami H., Kumar V., Efficient Calculation of Primary Images from a Set of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 4, no 5, pp. 511–515, Sept. 1982.

    Google Scholar 

  46. Belhumeur P.N., Hespanha J.P., Kriegman D.J., Eigenfaces versus Fisherfaces: Recognition Using Class Specific Linear Projection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, no 7, pp. 711–720, July 1987.

    Google Scholar 

  47. Snelick R., Uludag U., Mink A., Indovina M., Jain A.K., Large Scale Evaluation of Multimodal Biometric Authentication Using State-of-the-Art Systems, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, no 3, pp. 450–455, March 2005.

    Google Scholar 

  48. Jain A. K., Nandakumar K., Ross A., Score Normalization in Multimodal Biometric Systems, Pattern Recognition, 38, no 12, pp. 2270–2285, Dec. 2005.

    Google Scholar 

  49. Ron F., Kittler J. Eds., Multiple Classifier Systems, Lecture Notes in Computer Science, 2364, Springer-Verlag, 2002.

    Google Scholar 

  50. Jain R., Kasturi R., Schunck B.G., Machine Vision, McGraw-Hill Inc., 1995.

    Google Scholar 

  51. Haris K., Efstratiadis S.N., Maglaveras N., Katsaggelos A. K., Hybrid Image Segmentation Using Watersheds and Fast Region Merging, IEEE Transactions on Image Processing, 7, no 12, pp. 1684–1699, Dec. 1998.

    Google Scholar 

  52. Vincent L., Soille P., Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, no 6, pp 583–598, June 1991.

    Google Scholar 

  53. Burges C.J.C., A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, pp. 121–167, June 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavešić, N., Savič, T., Ribarić, S. et al. A multimodal hand-based verification system with an aliveness-detection module. Ann. Telecommun. 62, 130–155 (2007). https://doi.org/10.1007/BF03253253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03253253

Key words

Mots clés