Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Perfect Matchings of Polyomino Graphs

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

This paper gives necessary and sufficient conditions for a polyomino graph to have a perfect matching and to be elementary, respectively. As an application, we can decompose a non-elementary polyomino with perfect matchings into a number of elementary subpolyominoes so that the number of perfect matchings of the original non-elementary polyomino is equal to the product of those of the elementary subpolyominoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lovász, L., Plummer, M.D.: Matching Theory, Annals of discrete mathematics 29 Amsterdam: North-Holland 1986

    Google Scholar 

  2. Hetyei, G.: Rectangular configurations which can be covered by 2 × 1 rectangles (Hungarian). Pécsi Tan. Föisk Közl., 8, 351–367 (1964)

    Google Scholar 

  3. Kasteleyn, P.W.: The statistics of dimer on a lattice I., The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)

    Article  MATH  Google Scholar 

  4. Plummer, M.D.: Matching theory — a sampler: From Denes König to the present. Discrete Math. 100, 177–219 (1992)

    Google Scholar 

  5. John, P., Sachs, H., Zerntiz, H.: Counting perfect matchings in polyominoes with applications to the dimer problem. Zastosowania Matematyki (Appl. Math.) 19, 465–477 (1987)

    MATH  Google Scholar 

  6. Sachs, H.: Counting perfect matchings in lattice graphs. In: Topics in combinatorics and graph theory, pp. 577–584. Heidelberg: Physica-Verlag 1990

    Chapter  Google Scholar 

  7. Berge, C., Chen, C.C., Chvâtal, V., Soaw, C.S.: Combinatorial properties of polyominoes. Combinatorica 1, 217–224 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhang, Heping: The connectivity of Z-transformation graphs of perfect matchings of polyominoes. Discrete Math. 158, 257–272 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zhang, Fuji, Guo, Xiaofeng, Chen, Rongsi: Perfect matchings in hexagonal systems, Graphs and Comb. 1, 383–386 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kostochka, A.V.: Proc. 30th Internat, Wiss, Koll TH Ilmenau pp. 49–52. Vortragsreihe, E. 1985

  11. Zhang, Fuji, Chen, Rongsi: A theorem concerning perfect matchings in hexagonal systems. Acta Math. Appl. Sinica 5(1), 1–5 (1989)

    Article  MathSciNet  Google Scholar 

  12. Akiyama, J., Kano, M.: 1-factors of triangle graphs. In: J. Akiyama: Number theory and combinatorics, pp. 21–35. World Scientific 1985

  13. Zhang, Fuji, Zhang, Heping: Plane elementary bipartite graphs (submitted)

  14. Zhang, Fuji, Chen, Rongsi: When each hexagon of a hexagonal system covers it. Discrete Appl. Math. 30, 63–75 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zheng, Maolin: Perfect matchings in benzenoid systems, Ph.D.thesis, Rutgers University, 1992

  16. Hansen, P., Zheng, Maolin: A linear algorithm for a perfect matching in hexagonal systems. Discrete Math. 122, 297–304 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSFC

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, F. Perfect Matchings of Polyomino Graphs. Graphs and Combinatorics 13, 295–304 (1997). https://doi.org/10.1007/BF03353008

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03353008

Keywords