Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the k-colouring of circle-graphs

  • Contributed Papers
  • Conference paper
  • First Online:
STACS 88 (STACS 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 294))

Included in the following conference series:

Abstract

It is shown that the k-colouring problem for the class of circle graphs is NP-complete for k at least four. Until now this problem was still open. For circle graphs with maximum clique size k a 2k-colouring is always possible and can be found in O(n 2). This provides an approximation algorithm with a factor two. Further it is proven that the k-colouring problem for circle graphs is solvable in polynomial time if the degree is bounded. The complexity of the 3-colouring problem for circle graphs remains open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. de Fraysseix. A characterization of circle graphs. Europ. J. Combinatorics, Vol 5, 223–238, 1984.

    Google Scholar 

  2. S. Even and A. Itai. Queues, stacks and graphs. Theory of Machines and Computations, 71–86, 1971.

    Google Scholar 

  3. F. Gavril. Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3, 261–273, 1975.

    Google Scholar 

  4. C.P. Gabor, W.-L. Hsu, and K.J. Supowit. Recognizing circle graphs in polynomial time. FOCS, 85.

    Google Scholar 

  5. M.R. Garey, D.S. Johnson, G.L. Miller, and Ch.H. Papadimitriou. The complexity of coloring circular arcs and cords. SIAM Alg. Disc. Meth., 1. No. 2.:216–227, 1980.

    Google Scholar 

  6. U.I. Gupta, D.T. Lee, and J.Y.T. Leung. Efficient algorithms for interval graphs and circular-arc graphs. Networks, 12:459–467, 1982.

    Google Scholar 

  7. J.Y.-T. Leung. Fast algorithms for generating all maximal independent sets of interval, circular-arc and chordal graphs. Journal of Algorithms 5,, 5:22–35, 1984.

    Google Scholar 

  8. Werner Rheinboldt, editor. Not So Perfect Graphs, pages 235–253.

    Google Scholar 

  9. R.C. Read, D. Rotem, and J. Urrutia. Orientation of circle graphs. Journal of Graph Theory, 6:325–341, 1982.

    Google Scholar 

  10. D. Rotyem and J. Urrutia. Finding maximum cliques in circle graphs. Networks, 11:269–278, 1981.

    Google Scholar 

  11. A. Tucker. An efficient test for circular-arc graphs. SIAM J. Comput. Vol. 9. No. 1., 1–24, 1980.

    Google Scholar 

  12. W. Unger. On the k-Colouring of Circle Graphs. Technical Report, Universität Paderborn, 1987.

    Google Scholar 

  13. W. Wessel and R. Pöschel. On circle graphs. Graphs, Hypergraphs and Applications, 207–210, 1985.

    Google Scholar 

  14. M. Yannakakis. Four pages are necessary and sufficient for planar graphs. ACM, 104–108, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robert Cori Martin Wirsing

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Unger, W. (1988). On the k-colouring of circle-graphs. In: Cori, R., Wirsing, M. (eds) STACS 88. STACS 1988. Lecture Notes in Computer Science, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035832

Download citation

  • DOI: https://doi.org/10.1007/BFb0035832

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18834-6

  • Online ISBN: 978-3-540-48190-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics