Abstract
Distributed multimedia systems must handle multiple continuous media streams at once. The network subsystem must thus be able to transmit aggregation of VBR streams effectively. Data smoothing and shaping is necessary for high quality transmission. Flexibility is also required to handle different types of data formats and contents. In this paper, we propose the VoR system, a network subsystem framework for VBR continuous media transmission. It controls stream multiplexing by the scheduler in the network driver along with the QoS coordinator middleware. The system provides a way for application programs to interact with the underlying network. The system is designed on the principle of policy and mechanism separation, which enables to flexibly adapt to application dependent inter- and intra-stream QoS tradeoffs. Our preliminary result using MPEG2 streams indicates that while simple multiplexing gains some bandwidth utilization, better multiplexing can be achieved by providing more elaborate data dependent policies.
Work done while the author was in Keio University.
This work has been supported in part by Keio-MKng project sponsored by Information-technology Promotion Agency (IPA), Japan.
Preview
Unable to display preview. Download preview PDF.
References
Aurrecoechea, C., Campbell, A., Hauw, L., “A Survey of QoS Architectures”, Multimedia Systems Journal, Special Issue on QoS Architecture (to appear), 1997
Clark, D.D., Tennenhouse, D.L., “Architectural Considerations for a New Generation of Protocols”, In Proceedings of ACM SIGCOMM 1990.
Coulson, G., Campbell, A., Robin, P., Blair, G., Papathomas, M., Hutchison, D., “The Design of a QoS Controlled ATM Based Communications System in Chorus”, IEEE Journal on Selected Areas in Communications, Special Issue on ATM LANs, Vol13, No.4, May 1995.
Delgrossi, L., Halstrick, C., Hehmann, D., Herrtwich, R., Krone, O., Sandvoss, J., Vogt, C., “Media Scaling for Audiovisual Communication with the Heidelberg Transport System”, In Proceedings of ACM Multimedia 1993.
Fujii, T., Ishimaru, K., Sawabe, T., Suzuki, J., Ono, S., “Transmission Characteristics of Super High Definition Images with MPEG2”, HTDV '95, 1995.
Heyman, D.P., Lakshman, T.V., “What Are the Implications of Long-Range Dependence for VBR-Video Traffic Engineering?” IEEE/ACM Transactions on Networking, Vol.4, No.3, June 1996.
Käppner, T., Wolf, L.C., “Media Scaling in Distributed Multimedia Object Services”, In Proceedings of 2nd IWACA, 1994.
Kiczales, G., “Towards a New Model of Abstraction in Software Engineering”, In Proceedings of the IMSA '92 Workshop on Reflection and Meta-level Architecture, 1992.
“Information Technology-Coding of Moving Pictures and Associated Audio”, ISO/IEC 13818-1/2/3
Tokuda, H., Nakajima, T., Rao, P., “Real-Time Mach: Towards a Predictable Real-Time System”, In Proceedings of USENIX First Mach Symposium, 1990.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Matsui, Y., Tokuda, H. (1997). VoR: A network system framework for VBR over reserved bandwidth. In: Steinmetz, R., Wolf, L.C. (eds) Interactive Distributed Multimedia Systems and Telecommunication Services. IDMS 1997. Lecture Notes in Computer Science, vol 1309. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0000351
Download citation
DOI: https://doi.org/10.1007/BFb0000351
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63519-2
Online ISBN: 978-3-540-69590-5
eBook Packages: Springer Book Archive