Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Plastics from bacteria and for bacteria: Poly(β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters

  • Conference paper
  • First Online:
Microbial Bioproducts

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 41))

Abstract

A wide variety of different types of microorganisms are known to produce intracellular energy and carbon storage products which have been generally described as being poly(β-hydroxybutyrate), PHB, but which are, more often than not, copolymers containing different alkyl groups at the β-position. Hence, PHB belongs to the family of poly(β-hydroxyalkanoates), PHA, all of which are usually formed as intracellular inclusions under unbalanced growth conditions. Recently, it became of industrial interest to evaluate PHA polyesters as natural, biodegradable, and biocompatible plastics for a wide range of possible applications such as surgical sutures or packaging containers. For industrial applications, the controlled incorporation of repeating units with different chain lengths into a series of copolymers is desirable in order to produce polyesters with a range of material properties because physical and chemical characteristics depend strongly on the polymer composition. Such “tailormade” copolymers can be produced under controlled growth conditions, in that if a defined mixture of substrates for a certain type of microorganisms is supplied, a well defined and reproducible copolymer is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

PHA:

Poly(β-hydroxyalkanoates)

PHB:

Poly(β-hydroxybutyrate)

PHB-co-HV:

Poly(β-hydroxybutyrate-co-hydroxyvalerate)

PHH-co-HV:

Poly(β-hydroxyheptanoate-co-hydroxyvalerate)

PHN-co-HH:

Poly(β-hydroxynonanoate-co-hydroxyheptanoate)

References

  1. Byrom D, (1987) Trends in Biotechnol. 5: 246

    Google Scholar 

  2. Dawes EA, (1974) The role and regulation of poly-β-hydroxybutyrate as a reserve in microorganisms. In: Mano EB (ed) Proceedings of the International Symposium on Macromolecules, Rio de Janeiro, July 26–31. Elsevier, Amsterdam, p 433

    Google Scholar 

  3. Schlegel HG, Gottschalk G (1962) Angew. Chem. 74: 342

    Google Scholar 

  4. Shively JM (1974) Ann. Rev. Microbiol. 28: 167

    Google Scholar 

  5. Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Appl. Environ. Microbiol. 54: 1977

    Google Scholar 

  6. Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Abstracts of the annual meeting of the American Society for Microbiology, Miami Beach, p 272

    Google Scholar 

  7. Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Appl. Environ. Microbiol. 54: 2924

    Google Scholar 

  8. Suzuki T, Yamane T, Shimizu S (1986) Appl. Microbiol. Biotechnol. 24: 370

    Google Scholar 

  9. Pedrós-Alió C, Mas J, Guerrero R (1985) Arch. Microbiol. 143: 178

    Google Scholar 

  10. Capon RJ, Dunlop RW, Ghisalberti EL, Jefferies PJ (1983) Phytochemistry 22: 1181

    Google Scholar 

  11. Slater CS, Voige WH, Dennis DE (1988) J. Bacteriol. 170: 4431

    Google Scholar 

  12. Schubert P, Steinbüchel A, Schlegel HG (1988) J. Bacteriol. 170: 5837

    Google Scholar 

  13. Reusch RN, Hiske T, Sadoff HL (1986) J. Bacteriol. 168: 553

    Google Scholar 

  14. Reusch RN, Sadoff HL (1983) J. Bacteriol. 156: 778

    Google Scholar 

  15. Reusch RN, Hiske T, Sadoff HL, Harris R (1987) Can. J. Microbiol. 33: 435

    Google Scholar 

  16. Reusch RN, Sadoff HL (1988) Proc. Natl. Acad. Sci. USA 85: 4176

    Google Scholar 

  17. Emeruwa AC, Hawirko RZ (1973) J. Bacteriol. 116: 989

    Google Scholar 

  18. Amos DA, McInerey MJ (1987) Abstracts of the annual meeting of the American Society for Microbiology, Atlanta, p 174

    Google Scholar 

  19. Pfennig N (personal communication)

    Google Scholar 

  20. Fernandez-Castillo R, Rodriguez-Valera F, Gonzales-Ramos J, Ruiz-Berraquero F (1986) Appl. Environ. Microbiol. 51: 214

    Google Scholar 

  21. Benedict CV, Cameron JA, Huang SJ (1983) J. Appl. Polym. Sci. 28: 335

    Google Scholar 

  22. Nitikin DI, Pitruyk IA, Zagreba ED, Ginovska MK, Yacobson YO, Fetisova MB (1986) Microbiology 55: 509

    Google Scholar 

  23. Tal S, Okon Y (1985) Can. J. Microbiol. 31: 608

    Google Scholar 

  24. Nickels JS, King JD, White DC (1979) Appl. Environ. Microbiol. 37: 459

    Google Scholar 

  25. Tunlid A, Baird BH, Trexler MB, Olsson S, Findlay RH, White DC (1985) Can. J. Microbiol. 31: 1113

    Google Scholar 

  26. White DC, Smith GA, Gehron MJ, Parker JH, Findlay RH, Martz RF, Fredrickson HL (1983) Dev. Industr. Microbiol. 24: 201

    Google Scholar 

  27. Suzuki T, Yamane T, Shimizu S (1986) Appl. Microbiol. Biotechnol. 23: 322

    Google Scholar 

  28. Williamson DH, Wilkinson JF (1958) J. Gen. Microbiol. 19: 198

    Google Scholar 

  29. Dawes EA, Senior PJ (1973) Adv. Microb. Physiol. 10: 135

    Google Scholar 

  30. Merrick JM (1978) Metabolism of reserve materials. In: Clayton RK, Sistrom WR (eds) The Photosynthetic Bacteria, Plenum, New York, p 199

    Google Scholar 

  31. Dunlop WF, Robards AW (1973) J. Bacteriol. 114: 1271

    Google Scholar 

  32. Ellar D, Lundgren DG, Okamura K, Marchessault RH (1968) J. Molec. Biol. 35: 489

    Google Scholar 

  33. Merrick JM (1988) Polym. Prepr. 29 (1): 586

    Google Scholar 

  34. Merrick JM, Doudoroff M (1961) Nature 189: 890

    Google Scholar 

  35. Merrick JM, Lundgren DG, Pfister RM (1965) J. Bacteriol. 89: 234

    Google Scholar 

  36. Merrick JM, Yu CF (1966) Biochemistry 5: 3563

    Google Scholar 

  37. Haywood GW, Anderson AJ, Dawes EA (1989) FEMS Microbiol. Lett. 57: 1

    Google Scholar 

  38. Dawes EA (1986) Microbial energetics. Blackie, Glasgow, London

    Google Scholar 

  39. Lemoigne M (1925) Ann. Inst. Pasteur 39: 144

    Google Scholar 

  40. Macrae RM, Wilkinson JF (1958) J. Gen. Microbiol. 19: 210

    Google Scholar 

  41. Baptist JN (1959) US patent 3036959

    Google Scholar 

  42. Baptist JN (1960) US patent 3044942

    Google Scholar 

  43. Wallen LL, Rohwedder WK (1974) Environ. Sci. Technol. 8: 576

    Google Scholar 

  44. Findlay RH, White DC (1983) Appl. Environ. Microbiol. 45: 71

    Google Scholar 

  45. Cornibert J, Marchessault RH, Benoit H, Weill G (1970) Macromolecules 3: 741

    Google Scholar 

  46. Bloembergen S (1987) Characterization of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate) and synthesis of analogues via a non-biochemical approach. Thesis, University of Waterloo, Canada

    Google Scholar 

  47. Okamura K, Marchessault RH (1967) X-ray structure of poly-β-hydroxybutyrate. In: Ramachandran GN (ed) Conformation in Biopolymers, vol. 2. Academic, New York, p 709

    Google Scholar 

  48. Gross RA, DeMello C, Lenz RW, Brandl H, Fuller RC (1989) Macromolecules 22: 1106

    Google Scholar 

  49. Comeau Y, Hall KJ, Oldham WK (1988) Appl. Environ. Microbiol. 54: 2325

    Google Scholar 

  50. Odham G, Tunlid A, Westerdahl G, Marden P (1986) Appl. Environ. Microbiol. 52: 905

    Google Scholar 

  51. Herron JS, King JD, White DC (1987) Appl. Environ. Microbiol. 35: 251

    Google Scholar 

  52. Bluhm TL, Hamer GK, Marchessault RH, Fyfe CA, Veregin RP (1986) Macromolecules 19: 2871

    Google Scholar 

  53. Schlegel HG (1962) Arch. Microbiol. 42: 110

    Google Scholar 

  54. Lafferty RM, Heinzle E (1978) US Patent 4101533

    Google Scholar 

  55. Braunegg G, Sonnleitner B, Lafferty RM (1978) Eur. J. Appl. Microbiol. Biotechnol. 6: 29

    Google Scholar 

  56. Karr DB, Waters JK, Emerich DW (1983) Appl. Environ. Microbiol. 46: 1339

    Google Scholar 

  57. Doi Y, Kunioka M, Nakamura Y, Soga K (1986) Macromolecules 19: 2860

    Google Scholar 

  58. Brandl H, Knee EJ Jr, Fuller RC, Gross RA, Lenz RW (1989) Int. J. Biol. Macromol. 11: 49

    Google Scholar 

  59. Griebel R, Smith Z, Merrick JM (1968) Biochemistry 7: 3676

    Google Scholar 

  60. Griebel R, Merrick JM (1971) J. Bacteriol. 108: 782

    Google Scholar 

  61. De Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) J. Bacteriol. 154: 870

    Google Scholar 

  62. Hofsten VB, Baird GD (1962) Biotechnol. Bioengin. 6: 403

    Google Scholar 

  63. Lundgren DG, Alper R, Schnaitman C, Marchessault RH (1965) J. Bacteriol. 89: 245

    Google Scholar 

  64. Witholt B, Lageveen RG, Huisman GW, Preusting H, Nijenhuis A, Kingma J (1988) Polym. Prepr. 29 (1): 592

    Google Scholar 

  65. Davis JB (1964) Appl. Microbiol. 12: 301

    Google Scholar 

  66. Doi Y, Kunioka M, Nakamura Y, Soga K (1987) Macromolecules 20: 2988

    Google Scholar 

  67. Doi Y, Tamaki A, Kunioka M, Soga K (1987) Makromol. Chem., Rapid Comm. 8: 631

    Google Scholar 

  68. Holmes PA, Wright LF, Collins SH (1981) Eur. Pat. Appl. 0052459

    Google Scholar 

  69. Kunioka M, Tamaki A, Doi Y (1989) Macromolecules 22: 694

    Google Scholar 

  70. Seebach D, Züger MF (1982) Helv. Chim. Acta 65: 495

    Google Scholar 

  71. Seebach D, Züger MF (1985) Tetrahedron Lett. 25: 2747

    Google Scholar 

  72. Sonnet PE (1988) Chemtech 18: 94

    Google Scholar 

  73. Holmes PA (1985) Phys. Technol. 16: 32

    Google Scholar 

  74. Winton JM (1985) Chem. Week Aug. 28: 55

    Google Scholar 

  75. Howells ER (1982) Chem. Ind. 1982: 508

    Google Scholar 

  76. King PP (1982) J. Chem. Technol. Biotechnol. 32: 2

    Google Scholar 

  77. Uttley NL (1986) Appl. Biotechnol., Proc. BIOTECH '86, vol 1, p 171

    Google Scholar 

  78. Holland SJ, Jolly AM, Yasin M, Tighe BJ (1987) Biomaterials 8: 289

    Google Scholar 

  79. Miller ND, Williams DF (1987) Biomaterials 8: 129

    Google Scholar 

  80. Tanio T, Fukui T, Shirakura Y, Saito T, Tomita K, Kaiho T, Masamune S (1982) Eur. J. Biochem. 124: 71

    Google Scholar 

  81. Delafield FP, Doudoroff M, Palleroni NJ, Lustry CJ, Contopoulos R (1965) J. Bacteriol. 90: 1455

    Google Scholar 

  82. Lusty CJ, Doudoroff M (1966) Proc. Natl. Acad. Sci. USA 56: 960

    Google Scholar 

  83. Nakayama K, Saito T, Fukui T, Shirakura Y, Tomita K (1985) Biochim. Biophys. Acta 827: 63

    Google Scholar 

  84. McLellan DW, Halling PJ (1988) FEMS Microbiol. Lett. 52: 215

    Google Scholar 

  85. Chowdhury AA (1963) Arch. Microbiol. 47: 167

    Google Scholar 

  86. Cranwell PA (1976) Organic geochemistry in lake sediments. In: Nriagu JO (ed) Environmental Biochemistry, vol. 1. Ann Arbor Science, Michigan, p 75

    Google Scholar 

  87. Fenchel T, Blackburn TH (1979) Bacteria and Mineral Cycling. Academic, London, New York, San Francisco

    Google Scholar 

  88. Anonymous (1988) Mod. Plast. May 1988: 148

    Google Scholar 

  89. Bean MJ (1987) Mar. Poll. Bull. 18: 357

    Google Scholar 

  90. Leaversuch R (1987) Mod. Plast. Aug. 1987: 52

    Google Scholar 

  91. Pruter AT (1987) Mar. Poll. Bull. 18: 305

    Google Scholar 

  92. Wilber RJ (1987) Oceanus 30 (3): 61

    Google Scholar 

  93. Ryan PG (1988) Mar. Poll. Bull. 19: 125

    Google Scholar 

  94. O'Leary PR, Walsh PW, Ham RK (1988) Sci. Am. 259: 19

    Google Scholar 

  95. Crawford M (1988) Science 241: 411

    Google Scholar 

  96. Huffman GL, Keller DJ (1973) The plastics issue. In: Guillet J (ed) Polymers and Ecological Problems. Plenum, New York, London, p 155

    Google Scholar 

  97. Leaversuch R (1988) Mod. Plast. June 1988: 65

    Google Scholar 

  98. St. Pierre T, Chiellini E (1986) J. Bioact. Biocomp. Polym. 1: 467

    Google Scholar 

  99. St. Pierre T, Chiellini E (1987) Bioact. Biocomp. Polym. 2: 4

    Google Scholar 

  100. Benedict CV, Cameron JA, Huang SJ (1983) J. Appl. Polym. Sci. 28: 335

    Google Scholar 

  101. Benedict CV, Cook WJ, Jarrett P, Cameron JA, Huang SJ, Bell JP (1983) J. Appl. Polym. Sci. 28: 327

    Google Scholar 

  102. Cook WJ, Cameron JA, Bell JP, Huang SJ (1981) J. Polym. Sci: Polym. Lett. Ed. 19: 159

    Google Scholar 

  103. Mann S, Calvert PD (1987) Trends in Biotechnol. 5: 309

    Google Scholar 

  104. Uttley NL (1985) Manuf. Chem. Oct. 1985: 63

    Google Scholar 

  105. Martin DW, Seaton HJ, Stewart JR (1988) Abstracts of the annual meeting of the American Society for Microbiology, Miami Beach, p 216

    Google Scholar 

  106. Buchanan RE, Gibbons NE (eds) (1974) Bergey's Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  107. Ward AC, Rowley BI, Dawes EA (1977) J. Gen. Microbiol. 102: 61

    Google Scholar 

  108. Güde H, Strohl WR, Larkin JM (1981) Arch. Microbiol. 129: 357

    Google Scholar 

  109. Stockdale H, Ribbons DW, Dawes EA (1968) J. Bacteriol. 95: 1789

    Google Scholar 

  110. Poindexter JS, Eley LF (1983) J. Microbiol. Meth. 1: 1

    Google Scholar 

  111. Carr NG (1966) Biochim. Biophys. Acta 120: 308

    Google Scholar 

  112. Schlegel HG (1962) Arch. Microbiol. 42: 110

    Google Scholar 

  113. Forsyth WG, Hayward AC, Roberts JB (1958) Nature 182: 800

    Google Scholar 

  114. Emeruwa AC, Hawirko RZ (1973) J. Bacteriol. 116: 989

    Google Scholar 

  115. Cmiech HA, Leedale GF, Reynolds CS (1987) Br. Phycol. J. 22: 339

    Google Scholar 

  116. Adams LF, Ghiorse WC (1986) Arch. Microbiol. 145: 126

    Google Scholar 

  117. Powell KA, Collinson BA, Richardson KR (1983) Eur. Pat. Appl. 0015669

    Google Scholar 

  118. Asenjo JA, Suk JS (1986) J. Ferment. Technol. 64: 271

    Google Scholar 

  119. Dalton H, Stirling DI (1982) Phil. Trans. R. Soc. Lond. 297: 481

    Google Scholar 

  120. Sierra G, Gibbons NE (1962) Can. J. Microbiol. 8: 249

    Google Scholar 

  121. Reynolds CS, Jaworski GHM, Cmiech HA, Leedale GF (1981) Phil. Trans. R. Soc. Lond. 293: 419

    Google Scholar 

  122. Sonnleitner B, Heinzle E, Braunegg G, Lafferty RM (1979) Eur. J. Appl. Microbiol. Biotechnol. 7: 1

    Google Scholar 

  123. Stokes JL, Powers MT (1967) Arch. Microbiol. 59: 295

    Google Scholar 

  124. Campbell J, Stevens SE, Balkwill DL (1982) J. Bacteriol. 149: 361

    Google Scholar 

  125. Kannan LV, Rehacek Z (1970) Ind. J. Biochem. 7: 126

    Google Scholar 

  126. Wang WS, Lundgren DG (1969) J. Bacteriol. 97: 947

    Google Scholar 

  127. Bonnet-Smits EM, Robertson LA, Van Dijken JP, Senior E, Kuenen JG (1988) J. Gen. Microbiol. 134: 2281

    Google Scholar 

  128. Fukui T, Yoshimoto A, Matsumoto M, Hosokawa S, Saito T, Nishikawa H, Tomita K (1976) Arch. Microbiol. 110: 149

    Google Scholar 

  129. Lafferty RM, Braunegg G, Korneti L, Strempfl B, Bogensberger B, Korsatko W, Wabnegg B (1984) Poly-d-(-)-3-hydroxybutyric acid (poly-HB): Biotechnological production and polymer application. Third European Congress on Biotechnology, vol 1, Verlag Chemie, Weinheim, p 521

    Google Scholar 

  130. Ramsay BA, Ramsay JA, Cooper DG (1989) Appl. Environ. Microbiol. 55: 584

    Google Scholar 

  131. De Vries W, Stam H, Duys JG, Ligtenberg AJM, Simons LH, Stouthamer AH (1986) Antonie van Leeuwenhoek J. Microbiol. 52: 85

    Google Scholar 

  132. Lageveen R (1986) Oxidation of aliphatic compounds by Pseudomonas oleovorans: Biotechnological applications of the alkane-hydroxylase system. Thesis, University of Groningen, The Netherlands

    Google Scholar 

  133. Wakisaga Y, Masaki E, Nishimoto Y (1982) Appl. Environ. Microbiol. 43: 1473

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Brandl, H., Gross, R.A., Lenz, R.W., Fuller, R.C. (1990). Plastics from bacteria and for bacteria: Poly(β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. In: Microbial Bioproducts. Advances in Biochemical Engineering/Biotechnology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0010232

Download citation

  • DOI: https://doi.org/10.1007/BFb0010232

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52569-1

  • Online ISBN: 978-3-540-47040-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics