Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A real time process logic

  • Conference paper
  • First Online:
Temporal Logic (ICTL 1994)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 827))

Included in the following conference series:

  • 166 Accesses

Abstract

Systems can be described at various levels of abstraction: automata, processes and behavior. In this paper, we take the ready trace set as a description of the behavior of a process and we present a ready trace model of real time process algebra. We argue that, especially in the real time case, properties of ready trace sets are best formulated in a dedicated logic (as opposed to describing them in an enriched process notation, such as ACPτ). We present the syntax and semantics of a logic that could serve this purpose and we apply it to study the existence of socalled coordinated attack protocols. A connection is made with the metric temporal logic of Koymans. This paper is an abbreviated version of [BABB93].

This author received partial support from ESPRIT Basic Research Action 7166, CONCUR2.

This author received partial support from ESPRIT Basic Research Action 6454, CONFER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C.M. Baeten & J.A. Bergstra, Real time process algebra, Formal Aspects of Computing 3 (2), 1991, pp. 142–188.

    Article  Google Scholar 

  2. J.C.M. Baeten, J.A. Bergstra & R.N. Bol, A real time process logic, report CSN 93/15, Dept. of Computing Science, Eindhoven University of Technology, 1993.

    Google Scholar 

  3. J.C.M. Baeten, J.A. Bergstra & J.W. Klop, Ready trace semantics for concrete process algebra with priority operator, British Computer Journal 30 (6), 1987, pp. 498–506.

    Google Scholar 

  4. J.W. de Barker & J.I. Zucker, Processes and the denotational semantics of concurrency, I&C 54, 1982, pp. 70–120.

    Google Scholar 

  5. J.A. Bergstra & J.W. Klop, Process algebra for synchronous communication, Inf. & Control 60, 1984, pp. 109–137.

    Google Scholar 

  6. J.A. Bergstra & J.W. Klop, A complete inference system for regular processes with silent moves, in: Proc. Logic Coll. 1986, Hull (F.R. Drake & J.K. Truss, eds.), North-Holland 1988, pp. 21–81.

    Google Scholar 

  7. C.H. van Berkel, Handshake circuits: an intermediary between communicating processes and VLSI, Ph.D. Thesis, Eindhoven University of Technology 1992.

    Google Scholar 

  8. S.D. Brookes, C.A.R. Hoare & A.W. Roscoe, A theory of communicating sequential processes, J. ACM 31 (3), 1984, pp. 560–599.

    Article  Google Scholar 

  9. M. Broy, Functional specification of time sensitive communication systems, NATO ASI series, series F: computer and systems sciences, Vol. 88, pp. 325–367.

    Google Scholar 

  10. J.C. Ebergen, Translating programs into delay-insensitive circuits, Tract 56, CWI Amsterdam 1989.

    Google Scholar 

  11. R.J. van Glabbeek, The linear time — branching time spectrum, in: Proc. CONCUR'90, Amsterdam (J.C.M. Baeten & J.W. Klop, eds.), Springer LNCS 458, 1990, pp. 278–297.

    Google Scholar 

  12. J.F. Groote, Personal communication, 1992.

    Google Scholar 

  13. J.Y. Halpern & Y.O. Moses, Knowledge and common knowledge in a distributed environment, J. ACM 37, 1990, pp. 549–587.

    Article  Google Scholar 

  14. M. Hennessy & R. de Nicola, Testing equivalences for processes, TCS 34, 1984, pp. 83–134.

    Article  Google Scholar 

  15. C.A.R. Hoare, Communicating sequential processes, Prentice Hall 1985.

    Google Scholar 

  16. A. Kaldewaij, A formalism for concurrent processes, Ph.D. Thesis, Eindhoven University of Technology 1986.

    Google Scholar 

  17. R.L.C. Koymans, Specifying message passing and time-critical systems with temporal logic, Ph.D. Thesis, Eindhoven University of Technology 1989.

    Google Scholar 

  18. R.L.C. Koymans, Specifying message passing systems requires extending temporal logic, in: Proc. Temporal Logic in Specification (B. Banieqbal, H. Barringer & A. Pnueli, eds.), Springer LNCS 398, 1989, pp. 213–223.

    Google Scholar 

  19. J.-J. Ch. Meyer, Merging regular processes by means of fixed point theory, TCS 45, 1985, pp. 193–260.

    Article  Google Scholar 

  20. E.-R. Olderog, Nets, Terms and Formulas, Cambridge Tracts in Theor. Comp. Sci. 23, Cambridge University Press 1991.

    Google Scholar 

  21. E.-R. Olderog & C.A.R. Hoare, Specification-oriented semantics for communicating processes, in: Proc. ICALP 83 (J. Díaz, ed.), Springer LNCS 154, 1983, pp. 561–572.

    Google Scholar 

  22. J. Parrow, Fairness properties in process algebra — with applications in communication protocol verification, Ph.D. Thesis, Uppsala University 1985.

    Google Scholar 

  23. I.C.C. Philips, Refusal testing, TCS 50, 1987, pp. 241–284.

    Article  Google Scholar 

  24. A. Pnueli, Linear and branching structures in the semantics and logics of reactive systems, in: Proc. ICALP 85 (W. Brauer, ed.), Springer LNCS 194, 1985, pp. 15–32.

    Google Scholar 

  25. R. Reiter, On closed world databases, in: Logic and Databases (H. Gallaire and J. Minker, eds.), Plenum Press, 1978.

    Google Scholar 

  26. G.M. Reed & A.W. Roscoe, A timed model for communicating sequential processes, TCS 58, 1988, pp. 249–261.

    Article  Google Scholar 

  27. M. Rem, Partially ordered computations, with applications to VLSI design, in: Proc. Found. of Comp. Sci. IV.2 (J.W. de Bakker J. van Leeuwen, eds.), MC Tract 159, Math. Centre, Amsterdam 1983, pp. 1–44.

    Google Scholar 

  28. J.L.A. van de Snepscheut, Trace theory and VLSI design, Springer LNCS 200, 1985.

    Google Scholar 

  29. J.T. Udding, Classification and composition of delay-insensitive circuits, Ph.D. Thesis, Eindhoven University of Technology 1986.

    Google Scholar 

  30. E.P. de Vink, Designing stream based semantics for uniform concurrency and logic programming, Ph.D. Thesis, Free University, Amsterdam 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dov M. Gabbay Hans Jürgen Ohlbach

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baeten, J.C.M., Bergstra, J.A., Bol, R.N. (1994). A real time process logic. In: Gabbay, D.M., Ohlbach, H.J. (eds) Temporal Logic. ICTL 1994. Lecture Notes in Computer Science, vol 827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013979

Download citation

  • DOI: https://doi.org/10.1007/BFb0013979

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58241-0

  • Online ISBN: 978-3-540-48585-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics