Abstract
I describe a neural-network which decomposes a set of inputs into a sequence of generative parameters. It uses a series of coupled parameter finding and removing networks and requires the input to be in a particular temporal format.
Chapter PDF
References
Kohonen T. (1984). "Self organisation and Associative memory". Springer Verlag, Berlin 1984.
Saund E. (1989). "Dimensionality Reduction using Connectionist Networks". IEEE PAMI Vol 11 No 3, pp 304–314.
Leyton M. (1985). "Generative Systems of Analysers". Computer Vision, Graphics and Image Processing 31, pp 201–241.
Zipser D. and Anderson R.A. (1988). "A back-Propagation Programmed Network that Simulates Response Properties of a Subset of Posterior Parietal Neurons". Nature Vol 331, pp 679–684.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1990 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Walker, N. (1990). Using neural networks to learn shape decomposition by successive prototypication. In: Faugeras, O. (eds) Computer Vision — ECCV 90. ECCV 1990. Lecture Notes in Computer Science, vol 427. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0014922
Download citation
DOI: https://doi.org/10.1007/BFb0014922
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-52522-6
Online ISBN: 978-3-540-47011-3
eBook Packages: Springer Book Archive