Abstract
We present the now well-known ODE method in a general framework. We state a global convergence theorem when the ODE has no “pseudocycle” which could apply in many cases. We note that the Kohonen algorithm in dimension 1 (units and stimuli) after self-organization is a cooperative dynamical system and prove the uniqueness of its equilibrium point. We then derive results of convergence (a.s and in distribution) for a very general class of stimuli distributions and neighbourhood functions.
Preview
Unable to display preview. Download preview PDF.
References
M. Benaïm, A Dynamical System Approach to Stochastic Approximations, SIAM J. Control And Optimization, 34, n° 2, 1996, pp.437–472.
M. Benaïm, J.C. Fort, G. Pagès, Convergence of the One-dimensional Kohonen Algorithm. To appear in Adv. in Applied Proba.
M. Benaim, J.C. Fort, G. Pagès, Almost sure convergence of the one dimensional Kohonen Algorithm, ESANN'97 Bruges, pp.193–198.
C. Bouton, G. Pagès, Self-organization and convergence of the one-dimensional Kohonen algorithm with non-uniformly distributed stimuli, Stoch. Proc. & Appl., 47, 1993, pp.249–274.
C. Conley, Isolated invariant sets and the Morse index, Conf. Board of the Math. Science by AMS, Regional Conference Series in Mathematics, 1978.
M. Cottrell, J.C. Fort, Étude d'un algorithme d'auto-organisation, Ann. Inst. H. Poincaré, 23, n°1, 1987, pp.1–20.
M. Cottrell, J.C. Fort, G. Pagès, Theoretical aspects of the S.O.M. algorithm, WSOM'97 Helsinki, pp.246–267.
A. Flanagan, Self-organizing Neural Networks, Thèse 1306, EY.F.L., Lausanne, 1994.
J.C. Fort, G. Pagès, On the a.s. Convergence of the Kohonen Algorithm With a General Neighborhood Function, The Ann. of Applied Proba., 5, n° 4, 1995, pp.1177–1216.
J.C. Fort, G. Pagès, About the Kohonen algorithm: strong or weak selforganization?, Neural Networks, 9, n° 5, 1996, pp.773–785.
J.C. Fort, G. Pagès, Convergence of Stochastic Algorithms: from the Kushner & Clark Theorem to the Lyapounov Functional Method, Adv. in Applied Proba., 28,1996, pp.1072–1094.
M. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383, 1988, pp.1–53.
T. Kohonen, Ananlysis of a simple self-organizing process, Biol. Cybern., 44, 1982, p135–140.
T. Kohonen, Self-organization and associative memory, 3rd edition Springer, Berlin, 1989.
H.J. Kushner, D.S. Clark, Stochastic Approximation for Constraint and Unconstraint Systems, Appl. Math. Sci. Series, 26, Springer, 1978.
A. Sadeghi, Asymptotic Behaviour of Self-Organizing Maps with Non-Uniform Stimuli Distribution, forthcoming in Annals of Applied Probability.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fort, JC., Pagès, G. (1997). Convergences of the Kohonen maps: a dynamical system approach. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020225
Download citation
DOI: https://doi.org/10.1007/BFb0020225
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive