Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Convergences of the Kohonen maps: a dynamical system approach

  • Part IV: Signal Processing: Blind Source Separation, Vector Quantization, and Self Organization
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

We present the now well-known ODE method in a general framework. We state a global convergence theorem when the ODE has no “pseudocycle” which could apply in many cases. We note that the Kohonen algorithm in dimension 1 (units and stimuli) after self-organization is a cooperative dynamical system and prove the uniqueness of its equilibrium point. We then derive results of convergence (a.s and in distribution) for a very general class of stimuli distributions and neighbourhood functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Benaïm, A Dynamical System Approach to Stochastic Approximations, SIAM J. Control And Optimization, 34, n° 2, 1996, pp.437–472.

    Google Scholar 

  2. M. Benaïm, J.C. Fort, G. Pagès, Convergence of the One-dimensional Kohonen Algorithm. To appear in Adv. in Applied Proba.

    Google Scholar 

  3. M. Benaim, J.C. Fort, G. Pagès, Almost sure convergence of the one dimensional Kohonen Algorithm, ESANN'97 Bruges, pp.193–198.

    Google Scholar 

  4. C. Bouton, G. Pagès, Self-organization and convergence of the one-dimensional Kohonen algorithm with non-uniformly distributed stimuli, Stoch. Proc. & Appl., 47, 1993, pp.249–274.

    Google Scholar 

  5. C. Conley, Isolated invariant sets and the Morse index, Conf. Board of the Math. Science by AMS, Regional Conference Series in Mathematics, 1978.

    Google Scholar 

  6. M. Cottrell, J.C. Fort, Étude d'un algorithme d'auto-organisation, Ann. Inst. H. Poincaré, 23, n°1, 1987, pp.1–20.

    Google Scholar 

  7. M. Cottrell, J.C. Fort, G. Pagès, Theoretical aspects of the S.O.M. algorithm, WSOM'97 Helsinki, pp.246–267.

    Google Scholar 

  8. A. Flanagan, Self-organizing Neural Networks, Thèse 1306, EY.F.L., Lausanne, 1994.

    Google Scholar 

  9. J.C. Fort, G. Pagès, On the a.s. Convergence of the Kohonen Algorithm With a General Neighborhood Function, The Ann. of Applied Proba., 5, n° 4, 1995, pp.1177–1216.

    Google Scholar 

  10. J.C. Fort, G. Pagès, About the Kohonen algorithm: strong or weak selforganization?, Neural Networks, 9, n° 5, 1996, pp.773–785.

    Google Scholar 

  11. J.C. Fort, G. Pagès, Convergence of Stochastic Algorithms: from the Kushner & Clark Theorem to the Lyapounov Functional Method, Adv. in Applied Proba., 28,1996, pp.1072–1094.

    Google Scholar 

  12. M. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383, 1988, pp.1–53.

    Google Scholar 

  13. T. Kohonen, Ananlysis of a simple self-organizing process, Biol. Cybern., 44, 1982, p135–140.

    Google Scholar 

  14. T. Kohonen, Self-organization and associative memory, 3rd edition Springer, Berlin, 1989.

    Google Scholar 

  15. H.J. Kushner, D.S. Clark, Stochastic Approximation for Constraint and Unconstraint Systems, Appl. Math. Sci. Series, 26, Springer, 1978.

    Google Scholar 

  16. A. Sadeghi, Asymptotic Behaviour of Self-Organizing Maps with Non-Uniform Stimuli Distribution, forthcoming in Annals of Applied Probability.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fort, JC., Pagès, G. (1997). Convergences of the Kohonen maps: a dynamical system approach. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020225

Download citation

  • DOI: https://doi.org/10.1007/BFb0020225

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics