Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A clustering technique for object-oriented databases

  • Object-Oriented Databases I
  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1308))

Included in the following conference series:

Abstract

This paper proposed a new clustering technique for an object-oriented database mangement system. The technique is dynamic and employs a reduced set of statistics to minimize statistics collection overhead. Clustering is done automatically by using several evaluation criteria and requires less knowledge from the user by using fewer user's hints than other techniques. The technique also allows the user to tune the clustering process through a reduced set of parameters. Simulation experiments based on the HyperModel benchmark showed that the proposed clustering technique outperformed the two existing techniques, ORION and CACTIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.L. Anderson, A.J. Berre, M. Mallison, H.H. Porter III, B. Scheider, “The HyperModel Benchmark”, International Conference on Extending Database Technology, March 1990, pp 317–331

    Google Scholar 

  2. Veronique Benzaken, “An Evaluation Model for Clustering Strategies in the 02 Object Oriented Database System”, The Third International Conference on DataBase Theory (ICDT'90), December 1990.

    Google Scholar 

  3. R. Berthuet, “Cours de Statistiques”, CUST, Clermont-Ferrand, France, 1994.

    Google Scholar 

  4. Frederic Bullat, Michel Schneider, “A dynamic clustering strategy for object oriented databases”, CUST, Clermont-Ferrand, 1996.

    Google Scholar 

  5. Ellis E. Chang, “Effective Clustering and Buffering in an Object Oriented DBMS”, University of California, Berkeley, Computer Science Division, Technical Report, No. UCB/CSD 89/515, June 1989.

    Google Scholar 

  6. Jérôme Darmont, Le Gruenwald, “A Comparison Study of Clustering Techniques for Object-Oriented Databases”, Information Sciences Journal, December 1996.

    Google Scholar 

  7. Carsten Gerlhof, Alfons Kemper, Christoph Kilger, Guido Moerkotte, “Partition-Based Clustering in Objects Bases: From Theory to Practice”, 4th international conference on Foundation of Data Organization and Algorithms, 1993, pp 301–316.

    Google Scholar 

  8. Yvon Gourhant, Sylvain Louboutin, Vinny Cahill, Andrew Condon, Gradimir Starovic, Brendan Tangney, “Dynamic Clustering in an Object-Oriented Distributed System”, 1992.

    Google Scholar 

  9. Olivier Gruber, Laurent Amsaleg, “Object Grouping in Eos”, Workshop on Distributed Object Management, August 1992, pp 117–131.

    Google Scholar 

  10. Scott E. Hudson, Roger King, “Cactis: A Self-Adaptative, Concurrent Implementation of an Object Oriented Database Management System”, ACM Transaction on Database Systems, Vol. 14, No. 3, September 1989, pp 291–321.

    Google Scholar 

  11. Won Kim, Jorge F. Garza, Nathaniel Ballou, Darrel Woelk, “Architecture of the ORION Next-Generation Database System”, IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. 1, March 1990, pp 109–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Abdelkader Hameurlain A Min Tjoa

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gay, JY., Gruenwald, L. (1997). A clustering technique for object-oriented databases. In: Hameurlain, A., Tjoa, A.M. (eds) Database and Expert Systems Applications. DEXA 1997. Lecture Notes in Computer Science, vol 1308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0022020

Download citation

  • DOI: https://doi.org/10.1007/BFb0022020

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63478-2

  • Online ISBN: 978-3-540-69580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics