Abstract
In this paper, at first we describe a graph representing all the weak-order extensions of a partially ordered set and an algorithm generating them. Then we present a graph representing all of the minimal weak-order extensions of a partially ordered set, and implying a generation algorithm. Finally, we prove that the number of weak-order extensions of a partially ordered set is a comparability invariant, whereas the number of minimal weak-order extensions of a partially ordered set is not a comparability invariant.
Supported by IFP Digitale Filter.
This work was supported by the PROCOPE Program
Preview
Unable to display preview. Download preview PDF.
References
Birkhoff, G.Lattice Theory, 3rd ed. American Math. Soc., Providence, RI, 1967.
Bonnet, R., and Pouzet, M. Extensions et stratifications d'ensembles dispersés. C. R. Acad. Sci. 268 (1969), 1512–1515.
Bordat, J. Calcul pratique du treillis de gallois d'une correspondance. Math. Sci. Hun. 96 (1986), 31–47.
Bouchitté, V., and Habib, M. The calculation of invariants for partially ordered sets. In Algorithms and Order (1989), I. Rival, Ed., Kluwer Acad. Publ., Dordrecht, pp. 231–279.
Chretienne, P., and Carlier, J.Problèmes d'Ordonnancement. Masson, 1988.
Conway, R., Maxwell, W., and Miller, L.Theory of Scheduling. Addison-Wesley, 1967.
Dreesen, B., Poguntke, W., and Winkler, P. Comparability invariance of the fixed point property. Order 2 (1985), 269–274.
Habib, M., Morvan, M., Pouzet, M., and Rampon, J. Extensions intervallaires minimales. C. R. Acad. Sci. 318 (1991), 893–898.
Jourdan, G.-V., Rampon, J.-X., and Dard, C. Computing on-line the lattice of maximal antichains of posets. Order 11, 3 (1994), 197–210.
Lamport, L. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 21, 7 (1978), 558–565.
Möhring, R. H., and Radermacher, F. J. The order-theoretic approach to scheduling: The deterministic case. In Advances in Project Scheduling (1989), R. Slowinski and J. Weglarz, Eds., Elsevier Science Publishers B.V., Amsterdam, pp. 29–66.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bertet, K., Gustedt, J., Morvan, M. (1997). Weak-order extensions of an order. In: Möhring, R.H. (eds) Graph-Theoretic Concepts in Computer Science. WG 1997. Lecture Notes in Computer Science, vol 1335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024488
Download citation
DOI: https://doi.org/10.1007/BFb0024488
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63757-8
Online ISBN: 978-3-540-69643-8
eBook Packages: Springer Book Archive