Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computational complexity of the Krausz dimension of graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1335))

Included in the following conference series:

Abstract

A Krausz partition of a graph G is a partition of the edges of G into complete subgraphs. The Krausz dimension of a graph G is the least number k such that G admits a Krausz partition in which each vertex belongs to at most k classes. The graphs with Krausz dimension at most 2 k are exactly the line graphs, and graphs of the Krausz dimension at most k are intersection graphs of k-uniform linear hypergraphs. This paper studies the computational complexity of the Krausz dimension problem. We show that deciding if Krausz dimension of a graph is at most 3 is NP-complete in general, but solvable in polynomial time for graphs of maximum. degree 4. We pay closer attention to chordal graphs, showing that deciding if Krausz dimension is at most 6 is NP-complete for chordal graphs in general, while the Krausz dimension of a chordal graph with bounded clique size can be determined in polynomial time. We also show that for any fixed k, it can be decided in polynomial time if an interval graph has Krausz dimension at most k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. W. Beineke, I. Broere, The Krausz dimension of a graph, preprint 1994.

    Google Scholar 

  2. M.R. Garey, D.S. Johnson, Computers and Intractability, W.H. Freeman and Company, New York 1979.

    Google Scholar 

  3. P. Hliněný, Classes and recognition of curve contact graphs, submitted to J. of Combinatorial Theory B, 1996.

    Google Scholar 

  4. M.S. Jacobson, A.E. Kézdy, J. Lehel, Intersection graphs associated with uniform hypergraphs, Congressus Numerantium 116 (1996), 173–192.

    Google Scholar 

  5. T. Kloks, Treewidth, computations and approximations, Lecture Notes in Computer Science 842, Springer-Verlag 1994.

    Google Scholar 

  6. J. Krausz, Démonstration nouvelle d'un théoréme de Whitney sur les résaux (Hungarian with French summary), Mat. Fiz. Lapok 50 (1943), 75–85.

    Google Scholar 

  7. D. Lichtenstein, Planar formulae and their uses, SIAM J. of Computing 11 (1982), 329–343.

    Google Scholar 

  8. R.N. Naik, S.B. Rao, S.S. Shrikhande, N.M. Singhi, Intersection graphs of kuniform linear hypergraphs, European J. of Combinatorics 3 (1982), 159–172.

    Google Scholar 

  9. E. Prisner, Generalized octahedra and cliques in intersection graphs of uniform hypergraphs, preprint 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rolf H. Möhring

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hliněný, P., Kratochvíl, J. (1997). Computational complexity of the Krausz dimension of graphs. In: Möhring, R.H. (eds) Graph-Theoretic Concepts in Computer Science. WG 1997. Lecture Notes in Computer Science, vol 1335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024500

Download citation

  • DOI: https://doi.org/10.1007/BFb0024500

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63757-8

  • Online ISBN: 978-3-540-69643-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics