Abstract
The Supercover of a Euclidean object is the set of the pixels or voxels intersected by the object. The Supercover of 2D lines and 2D triangles are defined analytically. Some geometric properties, localization, and generation algorithms are given. The same is done for 3D lines, planes, and 3D triangles.
Chapter PDF
References
E. Andres, Cercles discrets et Rotations discretes [Discrete Cercles and Discrete Rotations], Ph.D. Thesis, Université Louis Pasteur, Strasbourg (France). Dec. 1992 (in French).
E. Andres, and C. Sibata, Discrete hyperplanes in arbitrary dimensions. to be published in CVGIP-GMIP.
E. Andres, C. Sibata, and R. Acharya, Supercover 3D Polygon, Proc. Int. Workshop on Discrete Geometry for Computer Imagery, LNCS, vol 1176, pp. 237–242.
E. Andres, Ph. Nehlig, and J. Françon, Tunnel free Supercover 3D polygons and polyhedra, Eurographics'97, BUDAPEST, Hungary, Sept 4–8 (1997), Computer Graphics Forum (Blackwell Publishers), vol 16(3), Conference issue, pp. C3–C13.
D. Cohen and A. Kaufman. Fundamentals of surface voxelization. CVGIPGMIP, 57(6), Nov.95, pp.453–461.
J. Françon, Arithmetic planes and combinatorial manifolds, 5th International Conference Discrete Geometry in Computer Imagery, Clermont-Ferrand, 25–27 Sept. 1995, pp. 209–217.
J. Françon, Sur la topologie d'un plan arithmétique [About the topology of the arithmetical plane], Theor. Comp. Sc. 156, 1996, pp. 159–176 (in French).
O. Figueiredo, and J.-P. Reveillès, A contribution to 3D digital lines, 5th International Conference Discrete Geometry in Computer Imagery, Clermont-Ferrand. 25–27 Sept. 1995, pp. 187–198.
J.-P. Reveillès, Géométrie Discrète, calcul en nombres entiers et algorithmique [Discrete Geometry, Integer Number Calculus, and Algorithmics], Thèse d'état. Université Louis Pasteur, Strasbourg (France), Dec. 1991 (in French).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Andres, E., Nehlig, P., Françon, J. (1997). Supercover of straight lines, planes and triangles. In: Ahronovitz, E., Fiorio, C. (eds) Discrete Geometry for Computer Imagery. DGCI 1997. Lecture Notes in Computer Science, vol 1347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024845
Download citation
DOI: https://doi.org/10.1007/BFb0024845
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63884-1
Online ISBN: 978-3-540-69660-5
eBook Packages: Springer Book Archive