Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The MINSUMCUT problem

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 519))

Included in the following conference series:

Abstract

In this paper we first present a sequential linear algorithm for a linear arrangement problem on trees, MINSUMCUT, and then an O(log n)-time parallel algorithm for MINSUMCUT on trees, which uses n2/(logn) processors.

This research was supported by the ESPRIT BRA Program of the EC under contract no. 3075, Project ALCOM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Adolphson and T.C. Hu. Optimal linear ordering. SIAM J. on Applied Mathematics, 25(3):403–423, Nov 1973.

    Google Scholar 

  2. J. Diaz. The δ-operator. In L. Budach, editor, Fundamentals of Computation Theory, pages 105–111. Akademie-Verlag, 1979.

    Google Scholar 

  3. M.R. Garey, R.L. Graham, D.S. Johnson, and D. Knuth. Complexity results for bandwidth minimization. SIAM J on Applied Mathematics, 34:477–495, Sept. 1978.

    Google Scholar 

  4. M.R. Garey and D.S. Johnson. Some simplified NP-complete graph problems. Theoretical Computer Science, 1:237–267, 1976.

    Google Scholar 

  5. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

    Google Scholar 

  6. A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  7. A. Gibbons and W. Rytter. Optimal parallel algorithms for dynamic expression evaluation and context free recognition. Information and Computation, 81(1):32–45, April 1989.

    Google Scholar 

  8. A. Gibbons and W. Rytter. Optimal edge-colouring outerplanar graphs is in NC. Theoretical Computer Science, 71:401–411, 1990.

    Google Scholar 

  9. L.H. Harper. Stabilization and the edgesum problem. Ars Combinatoria, 4:225–270, Dec. 1977.

    Google Scholar 

  10. M. Nanan and M. Kurtzberg. A review of the placement and quadratic assignment problems. SIAM Review, 14(2):324–341, April 1972.

    Google Scholar 

  11. Yossi Shiloach. A minimum linear arrangement algorithm for undirected trees. SIAM J. on Computing, 8(1):15–31, February 1979.

    Google Scholar 

  12. Mihalis Yannakakis. A polynomial algorithm for the min cut linear arrangement of trees. In IEEE Symp. on Found. of Comp. Sci., volume 24, pages 274–281, Providence RI, Nov. 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Nicola Santoro

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz, J., Gibbons, A.M., Paterson, M.S., Torán, J. (1991). The MINSUMCUT problem. In: Dehne, F., Sack, JR., Santoro, N. (eds) Algorithms and Data Structures. WADS 1991. Lecture Notes in Computer Science, vol 519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028251

Download citation

  • DOI: https://doi.org/10.1007/BFb0028251

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54343-5

  • Online ISBN: 978-3-540-47566-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics