Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Products of group languages

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1985)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 199))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Eilenberg, Automata, Languages and Machines, Academic Press, Vol A (1974) Vol B (1976)

    Google Scholar 

  2. J. Karnofsky and J. Rhodes, Decidability of complexity one-half for finite semigroups. Semigroup Forum 24, (1982), 55–66.

    Google Scholar 

  3. G. Lallement, Semigroups and Combinatorial applications. Wiley, New-York (1979)

    Google Scholar 

  4. S.W. Margolis and J.E. Pin, Languages and inverse semigroups, ICALP 1984, LNCS 172, (1984), 337–345.

    Google Scholar 

  5. J.E. Pin, Hiérarchies de concaténation, RAIRO Informatique Théorique 18 (1984) 23–46.

    Google Scholar 

  6. J.E. Pin, Variétés de langages formels, Masson, Paris (1984).

    Google Scholar 

  7. J.E. Pin, Topologies for the free monoids, submitted.

    Google Scholar 

  8. Ch. Reutenauer, Sur les variétés de langages et de monoides, LNCS 67, Springer (1979), 260–265.

    Google Scholar 

  9. J. Rhodes and B. Tilson

    Google Scholar 

  10. H. Straubing, Varieties of recognizable sets whose syntactic monoids contain solvable groups. Ph. D., University of California, Berkeley, (1978).

    Google Scholar 

  11. H. Straubing, Aperiodic homomorphisms and the concatenation product of recognizable sets, J. Pure and Applied Algebra 15, (1979), 319–327.

    Google Scholar 

  12. H. Straubing, Recognizable sets and power sets of finite semigroups, Semigroup Forum 18, (1979), 331–340.

    Google Scholar 

  13. H. Straubing, A generalization of the Schützenberger product of finite monoids Theoretical Computer Science 13, (1981), 137–150.

    Google Scholar 

  14. H. Straubing, Varieties of the form V * D, to appear.

    Google Scholar 

Download references

Authors

Editor information

Lothar Budach

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Margolis, S.W., Pin, J.E. (1985). Products of group languages. In: Budach, L. (eds) Fundamentals of Computation Theory. FCT 1985. Lecture Notes in Computer Science, vol 199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028813

Download citation

  • DOI: https://doi.org/10.1007/BFb0028813

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15689-5

  • Online ISBN: 978-3-540-39636-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics