Abstract
We show how tree-like data structures (B-trees, AVL trees, binary trees, etc. ...) can be characterized by functional equations in the context of the theory of species of structures which has been introduced as a conceptual framework for enumerative combinatorics. The generating functions associated to these abstract data structures are directly derived from the corresponding functional equations.
With the support of the NSERC Canada (grants A9041* and A5660†‡), and FCAR Québec (grant EQ1608*†‡).
Preview
Unable to display preview. Download preview PDF.
Bibliography
M. Bajraktarevic: Sur une équation fonctionnelle, Glasnik Mat.-Fiz. I Astr. 12, 1957, pp 201–205.
R.P. Brent and H.T. Kung; Fast Algorithms for Manipulating Formal Power Series, JACM 25 (4), 1978, pp 581–595.
H. Décoste, G. Labelle, and P. Leroux; Une approche combinatoire pour l'itération de Newton-Raphson, Adv. in Appl. Math. 3, Acad. Press, 1982, pp 407–416.
S. Dubuc; Une équation fonctionnelle pour diverses constructions géométriques, Annales des Sciences mathématiques du Québec, Vol. 9, No.2, 1985, pp 151–174.
P. Flajolet; Elements of a General Theory of Combinatorial Structures, Proceedings FCT85,L. Budach, Ed., Lect. Notes in Comp. Science, Springer-Verlag, Vol. 199 (1985), pp. 112–127.
J. Françon: On the Analysis of Algorithms for Trees, Theor. Comp. Science, Vol 4, 1977, pp 155–169.
J. Françon; Sur le nombre de registres nécessaires à l'évaluation d'une expression arithmétique, RAIRO, Informatique théorique, 18 (1984), pp. 355–364.
G.H. Gonnet; Handbook of Algorithms and Data Structures, International Computer Science Series, Addison-Wesley, 1984.
A. Joyal; Une théorie combinatoire des séries formelles, Adv. in Math. 42, 1981, pp 1–82.
D. Knuth; The Art of Computer Programming, vol.2, Addison-Wesley, 1981.
G. Labelle; Some New Computational Methods in the Theory of Species, in Combinatoire énumérative, Proceedings, Montréal, Québec 1985, ed. G.Labelle and P.Leroux, Springer Lecture Notes in Math., No.1234, 1986, pp. 192–209.
G. Labelle; Une combinatoire sous-jacente au théorème des fonctions implicites, J. Compin. Theory, Series A, 40, 1985, pp 377–393
P. Leroux and G. Viennot; Combinatorial Resolution of Systems of Differential Equations I, Ordinary Differential Equations, in Combinatoire énumérative, Proceedings, Montréal, Québec 1985, ed. G.Labelle and P.Leroux, Springer Lecture Notes in Math., No.1234, 1986.
K. Mehlhorn; Data Structures and Algorithms, I: Sorting and Searching, Springer-Verlag, 1985.
T. Ottmann and D. Wood; 1-2 Brother Trees or AVL Trees Revisited, Comp. Jour., Vol 23 (3), 1980, pp 248–255.
A. Odlyzcko; Periodic Oscillations of coefficients of Power Series that satisfiy Functional equations, Adv. in Math., 44 (1982),pp. 180–205.
A.H. Read. The Solution of a Functional Equation, Proc. Royal Soc. Edinburgh, A 63, 1951–1952, pp 336–345.
J. Vuillemin; A Unifying Look at Data Structures, Comm. of ACM, Vol 23 (4), 1980, pp 229–239.
A.C-C. Yao; On Random 2–3 Trees, Acta Informatica, Vol. 9, 1978, pp 159–170.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1988 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bergeron, F., Labelle, G., Leroux, P. (1988). Functional equations for data structures. In: Cori, R., Wirsing, M. (eds) STACS 88. STACS 1988. Lecture Notes in Computer Science, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035833
Download citation
DOI: https://doi.org/10.1007/BFb0035833
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-18834-6
Online ISBN: 978-3-540-48190-4
eBook Packages: Springer Book Archive