Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A linear-time heuristic for minimum rectangular coverings (Extended abstract)

  • Technical Contributions
  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1279))

Included in the following conference series:

  • 111 Accesses

Abstract

We consider the problem of covering polygons, without any acute interior angles, with rectangles. The rectangles must lie entirely within the polygon and it is preferable to cover the polygon with as few rectangles as possible. Let P be an arbitrary hole-free input polygon, with n vertices, coverable by rectangles. Let μ(P) denote the minimum number of rectangles required to cover P. In this paper we show, by using new techniques, that it is possible to construct a covering within an O(α(n)) approximation factor in O(n+μ(P)) time, where α(n) is the extremely slowly growing inverse of Ackermann's function. This improves the Ω(n 0.49...) worst-case approximation factor in time O(n log n+μ(P)) known before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.M. Chazelle, Computational Geometry and Convexity, Ph.D. Thesis, Department of Computer Science, Yale University, New Haven, CT, 1979.

    Google Scholar 

  2. J.C. Culberson and R.A. Reckhow, Covering Polygon is Hard, Journal of Algorithms, 17:2–44, 1994.

    Article  Google Scholar 

  3. J. Snoeyink, C.A. Wang and F. Chin, Finding the Medial Axis of a Simple Polygon in Linear-Time, ISAAC '95, Cairns, Australia, 1995 (LNCS 1006 Springer-Verlag).

    Google Scholar 

  4. D. Franzblau, Performance Guarantees on a Sweep-Line Heuristic for Covering Rectilinear Polygons with Rectangles, SIAM J. Disc. Math., 2:307–321, 1989.

    Article  Google Scholar 

  5. A. Hegediis, Algorithms for covering polygons by rectangles, Computer Aided Design, vol. 14, no. 5, 1982.

    Google Scholar 

  6. S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel Sequences and of Generalized Path Compression Schemes, Combinatorica, 6:151–177, 1986.

    Google Scholar 

  7. J.M. Keil, Minimally Covering a Horizontally Convex Orthogonal Polygon, Proceedings 2nd Annual Symposium Computational Geometry, pp.43–51, 1986.

    Google Scholar 

  8. D.G. Kirkpatrick, Efficient computation of continuous skeletons, 20th Annual IEEE Symposium on Foundation of Computer Science, 1979.

    Google Scholar 

  9. C. Levcopoulos, A Fast Heuristic for Covering Polygons by Rectangles, Proceedings FCT'85, Cottbus, GDR, 1985 (LNCS 199, Springer-Verlag).

    Google Scholar 

  10. C. Levcopoulos; Improved Bounds for Covering Ceneral Polygons with Rectangles, FST & TCS'87 Pune, India, 1987 (LNCS 287, Springer-Verlag).

    Google Scholar 

  11. C. Levcopoulos and J. Gudmundsson, Close Approximations of Minimum Rectangular Coverings, FST & TCS'96 Hyderabad, India, 1996 (LNCS 1180, Springer).

    Google Scholar 

  12. C. Levcopoulos and J. Gudmundsson, A Linear-Time Heuristic for Minimum Rectangular Coverings, LU-CS-TR:96-170, Dept. of Comp. Sci., Lund University, 1996.

    Google Scholar 

  13. W.J. Masek, Some NP-complete set covering problems, manuscript, MIT, 1979.

    Google Scholar 

  14. J. O'Rourke, The decidability of Covering by Convex Polygons, Report JHU-EE 82-1, Dept. Elect. Engrg. Comp. Sci., Johns Hopkins University, Baltimore, 1982.

    Google Scholar 

  15. J. O'Rourke and K.J. Supowit, Some NP-hard Polygon Decomposition Problems, IEEE Transactions on Information Theory, vol. IT-29, pp.181–190, 1983.

    Article  Google Scholar 

  16. F.P. Preparata and M.I. Shamos, Computational Geometry, New York, Springer-Verlag, 1985.

    Google Scholar 

  17. A. Wiernik, Planar Realization of Nonlinear Davenport-Schinzel Sequences by Segments, 27th IEEE Symposium on Computer Science, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bogdan S. Chlebus Ludwik Czaja

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levcopoulos, C., Gudmundsson, J. (1997). A linear-time heuristic for minimum rectangular coverings (Extended abstract). In: Chlebus, B.S., Czaja, L. (eds) Fundamentals of Computation Theory. FCT 1997. Lecture Notes in Computer Science, vol 1279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036193

Download citation

  • DOI: https://doi.org/10.1007/BFb0036193

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63386-0

  • Online ISBN: 978-3-540-69529-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics