Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Trees — a personal view

  • Conference paper
  • First Online:
New Results and New Trends in Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 555))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. M. Adelson-Velskii and Y. M. Landis. An algorithm for the organization of information. Doklady Akademia Nauk SSSR, 146:263–266, 1962. English Translation: Soviet Math. 3, 1259–1263.

    Google Scholar 

  2. A. Andersson, C. Icking, R. Klein, and Th. Ottmann. Binary search trees of almost optimal height. Acta Informatica, 28:165–178, 1990.

    Google Scholar 

  3. A. Andersson and T. Ottmann. Unique Representations of Sparse Dictionaries. Technical Report, University of Freiburg, in preparation, 1991.

    Google Scholar 

  4. A. Andersson and Th. Ottmann. Faster uniquely represented dictionaries. Manuscript submitted, 1991.

    Google Scholar 

  5. C.R. Aragon and R.G. Seidel. Randomized search trees. In Proc. of the 30th Annual IEEE Symposium on Foundations of Computer Science, pages 540–545, 1989.

    Google Scholar 

  6. R. Bayer. Symmetric binary B-trees: data structures and maintenance algorithms. Acta Informatica, 1:290–306, 1972.

    Google Scholar 

  7. R. Bayer and E. McCreight. Organization of large ordered indexes. Acta Informatica, 1:173–189, 1972.

    Google Scholar 

  8. A. Brüggemann-Klein and D. Wood. Drawing Trees Nicely with TEX. Technical Report, CS-87-05, Department of Computer Science, University of Waterloo, 1987.

    Google Scholar 

  9. D. Comer. The Ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, 1979.

    Google Scholar 

  10. J. Culberson. The effect of updates in binary search trees. In Proc. 17th ACM Annual Symp. on Theory of Comput., Providence, Rhode Island, pages 205–212, 1985.

    Google Scholar 

  11. L.J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In Proc. of the 19th Annual Symposium on Foundations of Computer Science, Ann Arbor, Michigan, pages 8–21, 1978.

    Google Scholar 

  12. D.E. Knuth. The Art of Computer Programming, Vol.1: Fundamentals Algorithms. Addison-Wesley Publishing Co., Reading, Mass., 1973.

    Google Scholar 

  13. J. van Leeuwen and H.M. Overmars. Stratified balanced search trees. Acta Informatica, 18:345–359, 1983.

    Google Scholar 

  14. H.A. Maurer, Th. Ottmann, and H.-W. Six. Implementing dictionaries using binary trees of very small height. Information Processing Letters, 5(1):11–14, 1976.

    Google Scholar 

  15. E.M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257–276, 1985.

    Google Scholar 

  16. J.I. Munro and H. Suwanda. Implicit data structures for fast search and update. J. Computer and System Sciences, 21:236–250, 1980.

    Google Scholar 

  17. J. Nievergelt and E.M. Reingold. Binary search trees of bounded balance. SIAM Journal on Computing, 2:33–43, 1973.

    Google Scholar 

  18. H. Olivié. A new class of balanced search trees: Half-balanced binary search trees. RAIRO Informatique Théorique, 16:51–71, 1982.

    Google Scholar 

  19. H. Olivié. A Study of Balanced Binary Trees and Balanced One-Two Trees. PhD thesis, University of Antwerpen, 1980.

    Google Scholar 

  20. Th. Ottmann, M. Schrapp, and D. Wood. Purley top-down updating algorithms for stratified search trees. Acta Informatica, 22:85–100, 1985.

    Google Scholar 

  21. Th. Ottmann and H.-W. Six. Eine neue klasse von ausgeglichenen bin”arb”aumen. Angewandte Informatik, 9:395–400, 1976.

    Google Scholar 

  22. Th. Ottmann and D. Wood. Updating binary trees with constant linkage cost. In Proceedings of the 2nd Scandinavian Workshop on Algorithm Theory, SWAT, Bergen, 1990.

    Google Scholar 

  23. W. Pugh. Skip lists: a probabilistic alternative to balanced trees. In F. Dehne, J.-R. Sack, and N. Santoro, editors, Proc. Workshop on Algorithms and Data Structures, WADS'89, Ottawa, LNCS 382, pages 381–392, 1989.

    Google Scholar 

  24. N. Sarnak and R.E. Tarjan. Planar point location using persistent search trees. Comm. ACM, 29:669–679, 1986.

    Google Scholar 

  25. D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. J. Assoc. Comput. Mach., 32:652–686, 1985.

    Google Scholar 

  26. L. Snyder. On uniquely represented data structures. In Proc. of the 18th Annual IEEE Symposium on Foundations of Computer Science, Providence, Rhode Island, pages 142–147, 1977.

    Google Scholar 

  27. R. Sundar and R.E. Tarjan. Unique binary search tree representations and the equality — testing of sets and segments. In Proc. of the 22nd Annual ACM Symposium on Theory of Computing, pages 18–25, 1990.

    Google Scholar 

  28. K.J. Supowit and E.M. Reingold. The complexity of drawing trees nicely. Acta Informatica, 18:377–392, 1983.

    Google Scholar 

  29. R.E. Tarjan. Data structures and network algorithms. In SIAM CBMS-NSF Regional Conference Series in Applied Mathematics 44, SIAM, Philadelphia, 1983.

    Google Scholar 

  30. R.E. Tarjan. Updating a balanced search tree in O(1) rotations. Information Processing Letters, 16:253–257, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hermann Maurer

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ottmann, T. (1991). Trees — a personal view. In: Maurer, H. (eds) New Results and New Trends in Computer Science. Lecture Notes in Computer Science, vol 555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0038193

Download citation

  • DOI: https://doi.org/10.1007/BFb0038193

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54869-0

  • Online ISBN: 978-3-540-46457-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics