Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Standard bases and non-noetherianity: Non-commutative polynomial rings

  • Conference paper
  • First Online:
Applicable Algebra, Error-Correcting Codes, Combinatorics and Computer Algebra (AAECC 1986)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 307))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.BUCHBERGER Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. Thesis, Innsbruck (1965)

    Google Scholar 

  2. B. BUCHBERGER A criterion for detecting unnecessary reductions in the constructions of Groebner bases, Proc. EUROSAM 79, L. N. Comp. Sci. 72 (1979), 3–21

    Google Scholar 

  3. B.BUCHBERGER Groebner bases: an algorithmic method in polynomial ideal theory, in N.K.BOSE Ed., Recent trends in multidimensional systems theory, Reidel (1985)

    Google Scholar 

  4. A. GALLIGO A propos du theoreme de preparation de Weierstrass. L. N. Math. 409 (1974), 543–579

    Google Scholar 

  5. H. HIRONAKA Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79 (1964), 109–326

    Google Scholar 

  6. A.KANDRI-RODY, D.KAPUR An algorithm for computing the Groebner basis of a polynomial ideal over a euclidean ring (1984)

    Google Scholar 

  7. H.KOBAYASHI, A.FURUKAWA, T.SASAKI Groebner basis of ideal of convergent power series (1985)

    Google Scholar 

  8. D. LAZARD Groebner bases, Gaussian elimination, and resolution of systems of algebraic equations, Proc. EUROCAL 83, L. N. Comp. Sci. 162 (1983), 146–156

    Google Scholar 

  9. H.M.MOELLER On the construction of Groebner bases using syzygies (1986)

    Google Scholar 

  10. F.MORA Groebner bases for non-commutative polynomial rings, Proc. AAECC3, L. N. Comp. Sci. 228 (1986)

    Google Scholar 

  11. F. MORA An algorithm to compute the equations of tangent cones, Proc. EUROCAM 82, L. N. Comp. Sci. 144 (1982), 158–165

    Google Scholar 

  12. F. MORA A constructive characterization of standard bases, Boll. U.M.I., Sez.D, 2 (1983), 41–50

    Google Scholar 

  13. T.MORA Standard bases (1), Congress on "Computational Geometry and Topology and Computation in Teaching Mathematics" Sevilla (1987)

    Google Scholar 

  14. C.NASTASESCU, F. VAN OYSTAEYEN Graded Ring Theory, North-Holland (1982)

    Google Scholar 

  15. L.PAN On the D-bases of ideals in polynomial rings over a principal ideal domain (1985)

    Google Scholar 

  16. L.ROBBIANO On the theory of graded structures, J. Symb. Comp. 2 (1986)

    Google Scholar 

  17. L. ROBBIANO Term orderings on the polynomial ring Proc. EUROCAL 85, L. N. Comp. Sci. 204 (1985), 513–517

    Google Scholar 

  18. S.SCHALLER Algorithmic aspects of polynomial residue class rings, Ph.D. Thesis, Wisconsin Univ. (1979)

    Google Scholar 

  19. G.ZACHARIAS Generalized Groebner bases in commutative polynomial rings, Bachelor Thesis, M.I.T. (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Beth Michael Clausen

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mora, T. (1988). Standard bases and non-noetherianity: Non-commutative polynomial rings. In: Beth, T., Clausen, M. (eds) Applicable Algebra, Error-Correcting Codes, Combinatorics and Computer Algebra. AAECC 1986. Lecture Notes in Computer Science, vol 307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0039183

Download citation

  • DOI: https://doi.org/10.1007/BFb0039183

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19200-8

  • Online ISBN: 978-3-540-39133-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics