Preview
Unable to display preview. Download preview PDF.
References
B.BUCHBERGER Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. Thesis, Innsbruck (1965)
B. BUCHBERGER A criterion for detecting unnecessary reductions in the constructions of Groebner bases, Proc. EUROSAM 79, L. N. Comp. Sci. 72 (1979), 3–21
B.BUCHBERGER Groebner bases: an algorithmic method in polynomial ideal theory, in N.K.BOSE Ed., Recent trends in multidimensional systems theory, Reidel (1985)
A. GALLIGO A propos du theoreme de preparation de Weierstrass. L. N. Math. 409 (1974), 543–579
H. HIRONAKA Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79 (1964), 109–326
A.KANDRI-RODY, D.KAPUR An algorithm for computing the Groebner basis of a polynomial ideal over a euclidean ring (1984)
H.KOBAYASHI, A.FURUKAWA, T.SASAKI Groebner basis of ideal of convergent power series (1985)
D. LAZARD Groebner bases, Gaussian elimination, and resolution of systems of algebraic equations, Proc. EUROCAL 83, L. N. Comp. Sci. 162 (1983), 146–156
H.M.MOELLER On the construction of Groebner bases using syzygies (1986)
F.MORA Groebner bases for non-commutative polynomial rings, Proc. AAECC3, L. N. Comp. Sci. 228 (1986)
F. MORA An algorithm to compute the equations of tangent cones, Proc. EUROCAM 82, L. N. Comp. Sci. 144 (1982), 158–165
F. MORA A constructive characterization of standard bases, Boll. U.M.I., Sez.D, 2 (1983), 41–50
T.MORA Standard bases (1), Congress on "Computational Geometry and Topology and Computation in Teaching Mathematics" Sevilla (1987)
C.NASTASESCU, F. VAN OYSTAEYEN Graded Ring Theory, North-Holland (1982)
L.PAN On the D-bases of ideals in polynomial rings over a principal ideal domain (1985)
L.ROBBIANO On the theory of graded structures, J. Symb. Comp. 2 (1986)
L. ROBBIANO Term orderings on the polynomial ring Proc. EUROCAL 85, L. N. Comp. Sci. 204 (1985), 513–517
S.SCHALLER Algorithmic aspects of polynomial residue class rings, Ph.D. Thesis, Wisconsin Univ. (1979)
G.ZACHARIAS Generalized Groebner bases in commutative polynomial rings, Bachelor Thesis, M.I.T. (1978)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1988 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mora, T. (1988). Standard bases and non-noetherianity: Non-commutative polynomial rings. In: Beth, T., Clausen, M. (eds) Applicable Algebra, Error-Correcting Codes, Combinatorics and Computer Algebra. AAECC 1986. Lecture Notes in Computer Science, vol 307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0039183
Download citation
DOI: https://doi.org/10.1007/BFb0039183
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-19200-8
Online ISBN: 978-3-540-39133-3
eBook Packages: Springer Book Archive