Preview
Unable to display preview. Download preview PDF.
References
J.L. Balcázar and U. Schöning. Bi-immune sets for complexity classes. Math. Sys. Theory, 18(1):1–10, 1985.
L. Berman. On the structure of complete sets: almost everywhere complexity and infinitely often speedup. In Proc. 17th IEEE Symposium on Foundations of Computer Science, pages 76–80, 1976.
R. Book, C. Wrathall, A. Selman, and D. Dobkin. Inclusion complete tally languages and the Hartmanis-Berman conjecture. Math. Syst. Theory, 11:1–8, 1977.
S. Even, T.J. Long, and Y. Yacobi. A note on deterministic versus nondeterministic complexity. Information and Control, 55:117–124, 1982.
S. Even, A.L. Selman, and Y. Yacobi. Hard-core theorems for complexity classes. J. Ass. Comp. Mach., 32:205–217, 1985.
P. Flajolet and J.M. Steyaert. On sets having only hard subsets. In Automata, Languages, and Programming, Lecture Notes in Computer Science vol. 14, pages 446–457, Springer-Verlag, Berlin, 1974.
M. Fürer. The tight deterministic time hierarchy. In Proc. 14th Annual ACM Symp. on Theory of Computing, pages 8–16, 1982.
J. Gill and M. Blum. On almost everywhere complex recursive functions. J. Ass. Comp. Mach., 21:425–435, 1974.
R.M. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In Proc. 12th ACM Symposium on Theory of Computing, pages 302–309, 1980.
K. Ko, P. Orponen, U. Schöning, and O. Watanabe. What is a hard instance of a computational problem? In Structure in Complexity Theory, Lecture Notes in Computer Science vol. 223, pages 197–217, Springer-Verlag, Berlin, 1986.
R. Ladner. On the structure of polynomial time reducibility. J. Ass. Comp. Mach., 22:155–171, 1975.
N. Lynch. On reducibility to complex or sparse sets. J. Ass. Comp. Mach., 22:341–345, 1975.
A.R. Meyer and E.M. McCreight. Computationally complex and pseudo-random zero-one valued functions. In Kohavi and Paz, editors, Theory of Machines and Computations, pages 19–42, Academic Press, 1971.
P. Orponen and U. Schöning. The structure of polynomial complexity cores. In Automata, Languages, and Programming, Lecture Notes in Computer Science vol. 176, pages 452–458, Springer-Verlag, Berlin, 1984.
W.J. Paul. On time hierarchies. In Proc. 9th Annual ACM Symp. on Theory of Computing, pages 218–222, 1977.
M.O. Rabin. Degree of difficulty of computing a function and a partial ordering of recursive sets. Tech. Report 2, Hebrew University, Jerusalem, Israel, 1960.
S. Sahni. Computationally related problems. SIAM J. Computing, 3:262–279, 1974.
S. Sahni and T. Gonzales. P-complete approximation problems. J. Ass. Comp. Mach., 23:555–565, 1976.
J.I. Seiferas, M.J. Fischer, and A.R. Meyer. Separating nondeterministic time complexity classes. J. Ass. Comp. Mach., 25:146–167, 1978.
S. Žák. A Turing machine time hierarchy. Theor. Comput. Sci., 26:327–333, 1983.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1987 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Geske, J.G., Huynh, D.T., Selman, A.L. (1987). A hierarchy theorem for almost everywhere complex sets with application to polynomial complexity degrees. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds) STACS 87. STACS 1987. Lecture Notes in Computer Science, vol 247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0039600
Download citation
DOI: https://doi.org/10.1007/BFb0039600
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-17219-2
Online ISBN: 978-3-540-47419-7
eBook Packages: Springer Book Archive