Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A hierarchy theorem for almost everywhere complex sets with application to polynomial complexity degrees

  • Contributed Papers
  • Conference paper
  • First Online:
STACS 87 (STACS 1987)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 247))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Balcázar and U. Schöning. Bi-immune sets for complexity classes. Math. Sys. Theory, 18(1):1–10, 1985.

    Google Scholar 

  2. L. Berman. On the structure of complete sets: almost everywhere complexity and infinitely often speedup. In Proc. 17th IEEE Symposium on Foundations of Computer Science, pages 76–80, 1976.

    Google Scholar 

  3. R. Book, C. Wrathall, A. Selman, and D. Dobkin. Inclusion complete tally languages and the Hartmanis-Berman conjecture. Math. Syst. Theory, 11:1–8, 1977.

    Google Scholar 

  4. S. Even, T.J. Long, and Y. Yacobi. A note on deterministic versus nondeterministic complexity. Information and Control, 55:117–124, 1982.

    Google Scholar 

  5. S. Even, A.L. Selman, and Y. Yacobi. Hard-core theorems for complexity classes. J. Ass. Comp. Mach., 32:205–217, 1985.

    Google Scholar 

  6. P. Flajolet and J.M. Steyaert. On sets having only hard subsets. In Automata, Languages, and Programming, Lecture Notes in Computer Science vol. 14, pages 446–457, Springer-Verlag, Berlin, 1974.

    Google Scholar 

  7. M. Fürer. The tight deterministic time hierarchy. In Proc. 14th Annual ACM Symp. on Theory of Computing, pages 8–16, 1982.

    Google Scholar 

  8. J. Gill and M. Blum. On almost everywhere complex recursive functions. J. Ass. Comp. Mach., 21:425–435, 1974.

    Google Scholar 

  9. R.M. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In Proc. 12th ACM Symposium on Theory of Computing, pages 302–309, 1980.

    Google Scholar 

  10. K. Ko, P. Orponen, U. Schöning, and O. Watanabe. What is a hard instance of a computational problem? In Structure in Complexity Theory, Lecture Notes in Computer Science vol. 223, pages 197–217, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  11. R. Ladner. On the structure of polynomial time reducibility. J. Ass. Comp. Mach., 22:155–171, 1975.

    Google Scholar 

  12. N. Lynch. On reducibility to complex or sparse sets. J. Ass. Comp. Mach., 22:341–345, 1975.

    Google Scholar 

  13. A.R. Meyer and E.M. McCreight. Computationally complex and pseudo-random zero-one valued functions. In Kohavi and Paz, editors, Theory of Machines and Computations, pages 19–42, Academic Press, 1971.

    Google Scholar 

  14. P. Orponen and U. Schöning. The structure of polynomial complexity cores. In Automata, Languages, and Programming, Lecture Notes in Computer Science vol. 176, pages 452–458, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  15. W.J. Paul. On time hierarchies. In Proc. 9th Annual ACM Symp. on Theory of Computing, pages 218–222, 1977.

    Google Scholar 

  16. M.O. Rabin. Degree of difficulty of computing a function and a partial ordering of recursive sets. Tech. Report 2, Hebrew University, Jerusalem, Israel, 1960.

    Google Scholar 

  17. S. Sahni. Computationally related problems. SIAM J. Computing, 3:262–279, 1974.

    Google Scholar 

  18. S. Sahni and T. Gonzales. P-complete approximation problems. J. Ass. Comp. Mach., 23:555–565, 1976.

    Google Scholar 

  19. J.I. Seiferas, M.J. Fischer, and A.R. Meyer. Separating nondeterministic time complexity classes. J. Ass. Comp. Mach., 25:146–167, 1978.

    Google Scholar 

  20. S. Žák. A Turing machine time hierarchy. Theor. Comput. Sci., 26:327–333, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franz J. Brandenburg Guy Vidal-Naquet Martin Wirsing

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geske, J.G., Huynh, D.T., Selman, A.L. (1987). A hierarchy theorem for almost everywhere complex sets with application to polynomial complexity degrees. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds) STACS 87. STACS 1987. Lecture Notes in Computer Science, vol 247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0039600

Download citation

  • DOI: https://doi.org/10.1007/BFb0039600

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17219-2

  • Online ISBN: 978-3-540-47419-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics