Abstract
We investigate the problem of constructing planar straightline drawings of graphs with large angles between the edges. Namely, we study the angular resolution of planar straight-line drawings, defined as the smallest angle formed by two incident edges. We prove the first nontrivial upper bound on the angular resolution of planar straight-line drawings, and show a continuous trade-off between the area and the angular resolution. We also give linear-time algorithms for constructing planar straight-line drawings with high angular resolution for various classes of graphs, such as series-parallel graphs, outerplanar graphs, and triangulations generated by nested triangles. Our results are obtained by new techniques that make extensive use of geometric constructions.
Research supported in part by the National Science Foundation under grant CCR-9007851, by the U.S. Army Research Office under grants DAAL03-91-G-0035 and DAAH04-93-0134, and by the Office of Naval Research and the Defense Advanced Research Projects Agency under contract N00014-91-J-4052, ARPA order 8225.
Preview
Unable to display preview. Download preview PDF.
References
P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. How to draw a series-parallel digraph. Proc. 3rd Scand. Workshop Algorithm Theory, vol. 621 of Lecture Notes in Computer Science, pp. 272–283. Springer-Verlag, 1992.
R. P. Brent and H. T. Kung. On the area of binary tree layouts. Inform. Process. Lett., 11:521–534, 1980.
P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward drawings of binary trees. Comp. Geom. Theory Appl., 2:187–200, 1992.
H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fary embeddings of planar graphs. Proc. 20th ACM Sympos. Theory Comput., pp. 426–433, 1988.
G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Preprint, Dept. Comput. Sci., Brown Univ., Providence, RI, November 1993. To appear in Comput. Geom. Theory Appl. Preliminary version available via anonymous ftp from wilma.cs.brown.edu, gdbiblio. tex.Z and gdbiblio.ps.Z in /pub/papers/compgeo.
G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom., 7:381–401, 1992.
G. Di Battista and L. Vismara. Angles of planar triangular graphs. Proc. 25th ACM Sympos. Theory Comput. (STOC 93), pp. 431–437, 1993.
M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton, A. Simvonis, E. Welzl, and G. Woeginger. Drawing graphs in the plane with high resolution. Proc. 31th IEEE Sympos. Found. Comput. Sci., pp. 86–95, 1990.
A. Garg, M. T. Goodrich, and R. Tamassia. Area-efficient upward tree drawings. Proc. 9th ACM Sympos. Comput. Geom., pp. 359–368, 1993.
G. Kant. Drawing planar graphs using the lmc-ordering. Proc. 33th IEEE Sympos. Found. Comput. Sci., pp. 101–110, 1992.
G. Kant. Algorithms for Drawing Planar Graphs. PhD thesis, Dept. Comput. Sci., Univ. Utrecht, Utrecht, Netherlands, 1993.
G. Kant. A more compact visibility representation. Proc. 19th Internat. Workshop Graph-Theoret. Concepts Comput. Sci. (WG'93), 1993.
G. Kant, G. Liotta, R. Tamassia, and I. Tollis. Area requirement of visibility representations of trees. Proc. 5th Canad. Conf. Comp. Geom., pp. 192–197, 1993.
C. E. Leiserson. Area-efficient graph layouts (for VLSI). Proc. 21st IEEE Sympos. Found. Comput. Sci., pp. 270–281, 1980.
S. Malitz and A. Papakostas. On the angular resolution of planar graphs. Proc. 24th ACM Sympos. Theory Comput., pp. 527–538, 1992.
P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom., 1(4):343–353, 1986.
W. Schnyder. Embedding planar graphs on the grid. Proc. 1st ACM-SIAM Sympos. Discrete Algorithms, pp. 138–148, 1990.
R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs. Discrete Comput. Geom., 1(4):321–341, 1986.
L. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Comput., C-30(2):135–140, 1981.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Garg, A., Tamassia, R. (1994). Planar drawings and angular resolution: Algorithms and bounds. In: van Leeuwen, J. (eds) Algorithms — ESA '94. ESA 1994. Lecture Notes in Computer Science, vol 855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0049393
Download citation
DOI: https://doi.org/10.1007/BFb0049393
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58434-6
Online ISBN: 978-3-540-48794-4
eBook Packages: Springer Book Archive