Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Planar drawings and angular resolution: Algorithms and bounds

Extended abstract

  • Conference paper
  • First Online:
Algorithms — ESA '94 (ESA 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 855))

Included in the following conference series:

Abstract

We investigate the problem of constructing planar straightline drawings of graphs with large angles between the edges. Namely, we study the angular resolution of planar straight-line drawings, defined as the smallest angle formed by two incident edges. We prove the first nontrivial upper bound on the angular resolution of planar straight-line drawings, and show a continuous trade-off between the area and the angular resolution. We also give linear-time algorithms for constructing planar straight-line drawings with high angular resolution for various classes of graphs, such as series-parallel graphs, outerplanar graphs, and triangulations generated by nested triangles. Our results are obtained by new techniques that make extensive use of geometric constructions.

Research supported in part by the National Science Foundation under grant CCR-9007851, by the U.S. Army Research Office under grants DAAL03-91-G-0035 and DAAH04-93-0134, and by the Office of Naval Research and the Defense Advanced Research Projects Agency under contract N00014-91-J-4052, ARPA order 8225.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. How to draw a series-parallel digraph. Proc. 3rd Scand. Workshop Algorithm Theory, vol. 621 of Lecture Notes in Computer Science, pp. 272–283. Springer-Verlag, 1992.

    Google Scholar 

  2. R. P. Brent and H. T. Kung. On the area of binary tree layouts. Inform. Process. Lett., 11:521–534, 1980.

    Article  Google Scholar 

  3. P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward drawings of binary trees. Comp. Geom. Theory Appl., 2:187–200, 1992.

    Google Scholar 

  4. H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fary embeddings of planar graphs. Proc. 20th ACM Sympos. Theory Comput., pp. 426–433, 1988.

    Google Scholar 

  5. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Preprint, Dept. Comput. Sci., Brown Univ., Providence, RI, November 1993. To appear in Comput. Geom. Theory Appl. Preliminary version available via anonymous ftp from wilma.cs.brown.edu, gdbiblio. tex.Z and gdbiblio.ps.Z in /pub/papers/compgeo.

    Google Scholar 

  6. G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom., 7:381–401, 1992.

    Article  MathSciNet  Google Scholar 

  7. G. Di Battista and L. Vismara. Angles of planar triangular graphs. Proc. 25th ACM Sympos. Theory Comput. (STOC 93), pp. 431–437, 1993.

    Google Scholar 

  8. M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton, A. Simvonis, E. Welzl, and G. Woeginger. Drawing graphs in the plane with high resolution. Proc. 31th IEEE Sympos. Found. Comput. Sci., pp. 86–95, 1990.

    Google Scholar 

  9. A. Garg, M. T. Goodrich, and R. Tamassia. Area-efficient upward tree drawings. Proc. 9th ACM Sympos. Comput. Geom., pp. 359–368, 1993.

    Google Scholar 

  10. G. Kant. Drawing planar graphs using the lmc-ordering. Proc. 33th IEEE Sympos. Found. Comput. Sci., pp. 101–110, 1992.

    Google Scholar 

  11. G. Kant. Algorithms for Drawing Planar Graphs. PhD thesis, Dept. Comput. Sci., Univ. Utrecht, Utrecht, Netherlands, 1993.

    Google Scholar 

  12. G. Kant. A more compact visibility representation. Proc. 19th Internat. Workshop Graph-Theoret. Concepts Comput. Sci. (WG'93), 1993.

    Google Scholar 

  13. G. Kant, G. Liotta, R. Tamassia, and I. Tollis. Area requirement of visibility representations of trees. Proc. 5th Canad. Conf. Comp. Geom., pp. 192–197, 1993.

    Google Scholar 

  14. C. E. Leiserson. Area-efficient graph layouts (for VLSI). Proc. 21st IEEE Sympos. Found. Comput. Sci., pp. 270–281, 1980.

    Google Scholar 

  15. S. Malitz and A. Papakostas. On the angular resolution of planar graphs. Proc. 24th ACM Sympos. Theory Comput., pp. 527–538, 1992.

    Google Scholar 

  16. P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom., 1(4):343–353, 1986.

    MathSciNet  Google Scholar 

  17. W. Schnyder. Embedding planar graphs on the grid. Proc. 1st ACM-SIAM Sympos. Discrete Algorithms, pp. 138–148, 1990.

    Google Scholar 

  18. R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs. Discrete Comput. Geom., 1(4):321–341, 1986.

    MathSciNet  Google Scholar 

  19. L. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Comput., C-30(2):135–140, 1981.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan van Leeuwen

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garg, A., Tamassia, R. (1994). Planar drawings and angular resolution: Algorithms and bounds. In: van Leeuwen, J. (eds) Algorithms — ESA '94. ESA 1994. Lecture Notes in Computer Science, vol 855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0049393

Download citation

  • DOI: https://doi.org/10.1007/BFb0049393

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58434-6

  • Online ISBN: 978-3-540-48794-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics