Abstract
In this paper, we present a new parallel block-reduction algorithm for reducing lattice bases which allows the use of an arbitrarily chosen block-size between two and n where n denotes the dimension of the lattice. Thus, we are building a hierarchy of parallel lattice basis reduction algorithms between the known parallel all-swap algorithm which is a parallelization for block-size two and the reduction algorithm for block-size n which corresponds to the known sequential lattice basis reduction algorithm. We show that even though the parallel all-swap algorithm as well as the parallel block-reduction algorithm have the same asymptotic complexity in respect to arithmetic operations in theory, in practice neither block-size two nor block-size n are a priori the best choices. The optimal block-size in respect to minimizing the reduction time rather depends strongly on the used parallel system and the corresponding communication costs.
The research was done while the author was a member of the Graduiertenkolleg Informatik at the UniversitÄt des Saarlandes (Saarbrücken), a fellowship program of the DFG (Deutsche Forschungsgemeinschaft).
Preview
Unable to display preview. Download preview PDF.
References
Biehl, I., Buchmann, J., and Papanikolaou, T.: LiDIA: A Library for Computational Number Theory. Technical Report 03/95, SFB 124, UniversitÄt des Saarlandes (1995).
Buchmann, J., and Kessler, V.: Computing a Reduced Lattice Basis from a Generating System. Preprint, UniversitÄt des Saarlandes, Saarbrücken (1992).
Cohen, H.: A Course in Computational Algebraic Number Theory. Second Edition, Springer Verlag Heidelberg (1993).
Coster, M.J., LaMacchia, B.A., Odlyzko, A.M., and Schnorr, C.P.: An Improved Low-density Subset Sum Algorithm. Proceedings EUROCRYPT '91, Springer Lecture Notes in Computer Science LNCS 547, pp. 54–67 (1991).
Golub, G.H., and van Loan, C.F.: Matrix Computations. John Hopkins University Press Baltimore (1996).
Grötschel, M., Lovász, L., and Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Second Edition, Springer Verlag Heidelberg (1993).
Heckler, C.: Automatische Parallelisierung und parallele Gitterbasisreduktion. PhD Thesis, UniversitÄt des Saarlandes, Saarbrücken, Germany (1995).
Heckler, C., and Thiele, L.: On the Time Complexity of Parallel Algorithms for Lattice Basis Reduction. Technical Report 05/93, SFB 124, UniversitÄt des Saarlandes (1995).
Heckler, C., and Thiele, L.: A Parallel Lattice Basis Reduction for Mesh-Connected Processor Arrays and Parallel Complexity. Proceedings SPDP '93, pp. 400–407 (1993).
Heckler, C., and Thiele, L.: Parallel Complexity of Lattice Basis Reduction and a Floating-Point Parallel Algorithm. Proceedings PARLE'93, Springer Lecture Notes in Computer Science LNCS 694, pp. 744–747 (1993).
Heckler, C., and Thiele, L.: Complexity Analysis of a Parallel Lattice Basis Reduction Algorithm. To appear in SIAM J. Comput. (1998).
Joux, A.: A Fast Parallel Lattice Reduction Algorithm. Proceedings Second Gauss Symposium, pp. 1–15 (1993).
Joux, A.: La Réduction des Réseaux en Cryptographie. PhD Thesis Laboratoire d'Informatique de L'Ecole Normale Superieure LIENS, Paris, France (1993).
Joux, A., and Stern, J.: Lattice Reduction: A Toolbox for the Cryptanalyst. Preprint (1994).
Kaltofen, E.: On the Complexity of Finding Short Vectors in Integer Lattices. Computer Algebra, Springer Lecture Notes in Computer Science LNCS 162, pp. 236–244 (1983).
Lagarias, J.C., and Odlyzko, A.M.: Solving Low-Density Subset Sum Problems. JACM 32, pp. 229–246 (1985).
LaMacchia, B.A.: Basis Reduction Algorithms and Subset Sum Problems. Master's Thesis MIT, (1991).
Lenstra, A.K., Lenstra, H.W., and Lovász, L.: Factoring Polynomials with Rational Coefficients. Math. Ann. 261, pp. 515–534 (1982).
Lenstra, H.W.: Integer Programming With a Fixed Number of Variables. Mathematics Operations Research, pp. 538–548 (1983).
LiDIA Group: LiDIA Manual. UniversitÄt des Saarlandes/TU Darmstadt, see LiDIA homepage: http://www.informatik.tu-darmstadt.de/TI/LiDIA (1997).
Papanikolaou, T.: Software-Entwicklung in der Computer-Algebra am Beispiel einer objektorientierten Bibliothek für algorithmische Zahlentheorie. PhD Thesis, UniversitÄt des Saarlandes, Saarbrücken, Germany (1997).
Pohst, M.E.: A Modification of the LLL Reduction Algorithm. Journal of Symbolic Computation 4, pp. 123–127 (1987).
Pohst, M.E., and Zassenhaus, H.J.: Algorithmic Algebraic Number Theory. Cambridge University Press (1989).
Roch, J.L., and Villard, G.: Parallel Gcd and Lattice Basis Reduction. Proceedings CONPAR '92, Springer Lecture Notes in Computer Science LNCS 634, pp. 557–564 (1992).
Schnorr, C.P.: A More Efficient Algorithm for Lattice Basis Reduction. Journal of Algorithms 9, pp. 47–62 (1988).
Schnorr, C.P., and Euchner, M.: Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems. Proceedings of Fundamentals of Computation Theory '91, Springer Lecture Notes in Computer Science LNCS 529, pp. 68–85 (1991).
Schönhage, A.: Factorization of Univariate Integer Polynomials by Diophantine Approximation and an Improved Basis Reduction Algorithm. Proceedings ICALP '84, Springer Lecture Notes in Computer Science LNCS 172, pp. 436–447 (1984).
Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons, New York (1986).
Villard, G.: Parallel Lattice Basis Reduction. Proceedings ISSAC '92, ACM Press, pp. 269–277 (1992).
Wetzel, S.: Lattice Basis Reduction Algorithms and their Applications. PhD Thesis, UniversitÄt des Saarlandes, Saarbrücken, Germany, submitted (1998).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wetzel, S. (1998). An efficient parallel block-reduction algorithm. In: Buhler, J.P. (eds) Algorithmic Number Theory. ANTS 1998. Lecture Notes in Computer Science, vol 1423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054872
Download citation
DOI: https://doi.org/10.1007/BFb0054872
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64657-0
Online ISBN: 978-3-540-69113-6
eBook Packages: Springer Book Archive