Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust asynchronous protocols are finite-state

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1443))

Included in the following conference series:

Abstract

We consider networks of finite-state machines which communicate over reliable channels which may reorder messages. Each machine in the network also has a local input tape. Since channels are unbounded, the network as a whole is, in general, infinite-state.

An asynchronous protocol is a network equipped with an acceptance condition. Such a protocol is said to be robust if it never deadlocks and, moreover, it either accepts or rejects each input in an unambiguous manner. The behaviour of a robust protocol is insensitive to nondeterminism introduced by either message reordering or the relative speeds at which components read their local inputs.

Using an automata-theoretic model, we show that, at a global level, every robust asynchronous protocol has a finite-state representation. To prove this, we establish a variety of pumping lemmas. We also demonstrate a distributed language which does not admit a robust protocol.

Partly supported by IFCPAR Project 1502-1.

Currently on leave at Department of Computer Science, State University of New York at Stony Brook, NY 11794-4400, USA. E-mail: kumar@cs.sunysb.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A. Abdulla and B. Jonsson: Verifying programs with unreliable channels, in Proc. 8th IEEE Symp. Logic in Computer Science, Montreal, Canada (1993).

    Google Scholar 

  2. A. Ginzburg and M. Yoeli: Vector addition systems and regular languages, J. Comput. System. Sci. 20 (1980) 277–284

    Article  MATH  MathSciNet  Google Scholar 

  3. S.A. Greibach: Remarks on blind and partially blind one-way multicounter machines, Theoret. Comput. Sci 7 (1978) 311–324.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Hack: Petri Net Languages, C.S.G. Memo 124, Project MAC, MIT (1975).

    Google Scholar 

  5. G.J. Holzmann: Design and validation of computer protocols, Prentice Hall (1991).

    Google Scholar 

  6. M. Jantzen: Language theory of Petri nets, in W. Brauer, W. Reisig, G. Rozenberg (eds.), Advances in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 397–412.

    Google Scholar 

  7. R.M. Karp and R.E. Miller: Parallel program schemata, J. Comput. System Sci., 3 (4) (1969) 167–195.

    MathSciNet  Google Scholar 

  8. N.A. Lynch and M. Tuttle: Hierarchical correctness proofs for distributed algorithms, MIT/LCS/TR-387, Laboratory for Computer Science, MIT (1987).

    Google Scholar 

  9. M. Mukund, K. Narayan Kumar and M. Sohoni: Keeping track of the latest gossip in message-passing systems, Proc. Structures in Concurrency Theory (STRICT), Berlin 1995, Workshops in Computing Series, Springer-Verlag (1995) 249–263.

    Google Scholar 

  10. M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni: Counter automata and asynchronous communication, Report TCS-97-4, SPIC Mathematical Institute, Madras, India (1997).

    Google Scholar 

  11. M. Mukund and M. Sohoni: Gossiping, asynchronous automata and Zielonka's theorem, Report TCS-94-2, School of Mathematics, SPIC Science Foundation, Madras, India (1994).

    Google Scholar 

  12. P. Panangaden and E.W. Stark: Computations, residuals, and the power of indeterminacy, Proc. ICALP '88, Springer LNCS 317 (1988) 439–454.

    MATH  MathSciNet  Google Scholar 

  13. J.L. Peterson: Petri net theory and the modelling of systems, Prentice Hall (1981).

    Google Scholar 

  14. R. Valk and G. Vidal-Naquet: Petri nets and regular languages, J. Comput. System. Sci. 23 (3) (1981) 299–325.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Zielonka: Notes on finite asynchronous automata, R.A.I.R.O.—Inf. Théor. et Appl., 21 (1987) 99–135.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kim G. Larsen Sven Skyum Glynn Winskel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mukund, M., Kumar, K.N., Radhakrishnan, J., Sohoni, M. (1998). Robust asynchronous protocols are finite-state. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055052

Download citation

  • DOI: https://doi.org/10.1007/BFb0055052

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64781-2

  • Online ISBN: 978-3-540-68681-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics