Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Concatenable graph processes: Relating processes and derivation traces

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1443))

Included in the following conference series:

Abstract

Several formal concurrent semantics have been proposed for graph rewriting, a powerful formalism for the specification of concurrent and distributed systems which generalizes P/T Petri nets. In this paper we relate two such semantics recently proposed for the algebraic double-pushout approach to graph rewriting, namely the derivation trace and the graph process semantics. The notion of concatenable graph process is introduced and then the category of concatenable derivation traces is shown to be isomorphic to the category of concatenable graph processes. As an outcome we obtain a quite intuitive characterization of events and configurations of the event structure associated to a graph grammar.

Research partly supported by the EC TMR Network GETGRATS (General Theory of Graph Transformation Systems) and by the EC Esprit WG APPLIGRAPH (Applications of Graph Transformation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Baldan, A. Corradini, and U. Montanari. An event structure semantics for P/T contextual nets: Asymmetric event structures. FoSSaCS '98, LNCS 1378, pp. 63–80. Springer, 1998.

    Google Scholar 

  2. A. Corradini. Concurrent Graph and Term Graph Rewriting. CONCUR'96, LNCS 1119, pp. 438–464. Springer, 1996.

    Google Scholar 

  3. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Abstract Graph Derivations in the Double-Pushout Approach. Dagstuhl Seminar 9301 on Graph Transformations in Computer Science, LNCS 776, pp. 86–103. Springer, 1994.

    Google Scholar 

  4. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Note on standard representation of graphs and graph derivations. Dagstuhl Seminar 9301 on Graph Transformations in Computer Science, LNCS 776, pp. 104–118. Springer, 1994.

    Google Scholar 

  5. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. An Event Structure Semantics for Graph Grammars with Parallel Productions. 5th International Workshop on Graph Grammars and their Application to Computer Science, LNCS 1073. Springer, 1996.

    Google Scholar 

  6. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Informaticae, 26:241–265, 1996.

    MATH  MathSciNet  Google Scholar 

  7. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic Approaches to Graph Transformation I: Basic Concepts and Double Pushout Approach. In [15].

    Google Scholar 

  8. P. Degano, J. Meseguer, and U. Montanari. Axiomatizing the algebra of net computations and processes. Acta Informatica, 33:641–647, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Ehrig. Tutorial introduction to the algebraic approach of graph-grammars. 3rd International Workshop on Graph-Grammars and Their Application to Computer Science, LNCS 291, pp. 3–14. Springer, 1987.

    Google Scholar 

  10. U. Golz and W. Reisig. The non-sequential behaviour of Petri nets. Information and Control, 57:125–147, 1983.

    Article  MathSciNet  Google Scholar 

  11. H.-J. Kreowski. Manipulation von Graphmanipulationen. PhD thesis, Technische Universität Berlin, 1977.

    Google Scholar 

  12. A. Maggiolo-Schettini and J. Winkowski. Dynamic Graphs. In MFCS'96, LNCS 1113, pp. 431–442, 1996.

    MathSciNet  Google Scholar 

  13. J. Meseguer, U. Montanari, and V. Sassone. On the semantics of Petri nets. In CONCUR '92, LNCS 630, pp. 286–301. Springer, 1992.

    Google Scholar 

  14. J. Meseguer, U. Montanari, and V. Sassone. Process versus unfolding semantics for Place/Transition Petri nets. Theoret. Comput. Sci., 153(1–2):171–210, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transformation. Volume 1: Foundations. World Scientific, 1997.

    Google Scholar 

  16. G. Schied. On relating Rewriting Systems and Graph Grammars to Event Structures. Dagstuhl Seminar 9301 on Graph Transformations in Computer Science, LNCS 776, pp. 326–340. Springer, 1994.

    Google Scholar 

  17. G. Winskel. Event Structures. In Petri Nets: Applications and Relationships to Other Models of Concurrency, LNCS 255, pp. 325–392. Springer, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kim G. Larsen Sven Skyum Glynn Winskel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baldan, P., Corradini, A., Montanari, U. (1998). Concatenable graph processes: Relating processes and derivation traces. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055061

Download citation

  • DOI: https://doi.org/10.1007/BFb0055061

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64781-2

  • Online ISBN: 978-3-540-68681-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics