Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modularization and abstraction: The keys to practical formal verification

  • Invited Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1998 (MFCS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1450))

Abstract

In spite of the impressive progress in the development of the two main methods for formal verification of reactive systems — Model Checking (in particular symbolic) and Deductive Verification, they are still limited in their ability to handle large systems. It is generally recognized that the only way these methods can ever scale up is by the extensive use of abstraction and modularization, which breaks the task of verifying a large system into several smaller tasks of verifying simpler systems.

In this methodological paper, we review the two main tools of compositionality and abstraction in the framework of linear temporal logic. We illustrate the application of these two methods for the reduction of an infinite-state system into a finite-state system that can then be verified using model checking.

The modest technical contributions contained in this paper are a full formulation of abstraction when applied to a system with both weak and strong fairness requirements and to a general temporal formula, and a presentation of a compositional framework for shared variables and its application for forming network invariants.

This research was supported in part by a gift from Intel, a grant from the U.S.-Israel bi-national science foundation, and an Infrastructure grant from the Israeli Ministry of Science and the Arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Properties preserving simulations. CAV'92, vol. 663 of LNCS, pp 251–263, 1992.

    Google Scholar 

  2. N. BjØrner, I.A. Browne, and Z. Manna. Automatic generation of invariants and intermediate assertions. 1st Intl. Conf. on Principles and Practice of Constraint Programming, vol. 976 of LNCS, pp 589–623, 1995.

    Google Scholar 

  3. M.C. Browne, E.M. Clarke, and O. Grumberg. Reasoning about networks with many finite state processes. PODC'86, pp 240–248, 1986.

    Google Scholar 

  4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. POPL'77, 1977.

    Google Scholar 

  5. E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at Ltl model checking. CAV'94, vol. 818 of LNCS, pp 415–427, 1994.

    Google Scholar 

  6. E.M. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks using abstraction and regular languages. CONCUR'95, pp 395–407, 1995.

    Google Scholar 

  7. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM Trans. Prog. Lang. Sys., 16(5):1512–1542, 1994.

    Article  Google Scholar 

  8. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking. Model Checking, Abstraction and Composition, vol. 152 of Nato ASI Series F, pages 477–498. Springer-Verlag, 1996.

    Google Scholar 

  9. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. POPL'78, pp 84–96, 1978.

    Google Scholar 

  10. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM Trans. Prog. Lang. Sys., 19(2), 1997.

    Google Scholar 

  11. E. A. Emerson and K. S. Namjoshi. Reasoning about rings. POPL'95, 1995.

    Google Scholar 

  12. E.A. Emerson and K.S. Namjoshi. Automatic verification of parameterized synchronous systems. CAV'96, LNCS, 1996.

    Google Scholar 

  13. S. Graf and C. Loiseaux. A tool for symbolic program verification and abstraction. CAV'93, vol. 697 of LNCS, pp 71–84, 1993.

    Google Scholar 

  14. N. Halbwachs, F. Lagnier, and C. Ratel. An experience in proving regular networks of processes by modular model checking. Acta Informatica, 29(6/7):523–543, 1992.

    Article  MATH  Google Scholar 

  15. C.N. Ip and D. Dill. Verifying systems with replicated components in Murϕ. CAV'96, LNCS, 1996.

    Google Scholar 

  16. R.P. Kurshan and K.L. McMillan. A structural induction theorem for processes. Information and Computation, 117:1–11, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic specifications. ICALP'98, LNCS, 1998.

    Google Scholar 

  18. L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software Engin., 3:125–143, 1977.

    MATH  MathSciNet  Google Scholar 

  19. D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameterized linear networks of processes. POPL'97, 1997.

    Google Scholar 

  20. D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics of concurrent termination. ICALP'81, vol. 115 of LNCS, pp 264–277, 1981.

    MATH  MathSciNet  Google Scholar 

  21. Z. Manna, A. Anuchitanukul, N. BjØrner, A. Browne, E. Chang, M. Colón, L. De Alfaro, H. Devarajan, H. Sipma, and T.E. Uribe. STeP: The Stanford Temporal Prover. Technical Report STAN-CS-TR-94-1518, Dept. of Comp. Sci., Stanford University, Stanford, California, 1994.

    Google Scholar 

  22. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-Verlag, New York, 1991.

    Google Scholar 

  23. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag, New York, 1995.

    Google Scholar 

  24. Z. Shtadler and O. Grumberg. Network grammars, communication behaviors and automatic verification. CAV'89, vol. 407 of LNCS, pp 151–165, 1989.

    Google Scholar 

  25. A.P. Sistla and S.M. German. Reasoning about systems with many processes. J. ACM, 39:675–735, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network invariants. CAV'89, vol. 407 of LNCS, pp 68–80, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luboš Brim Jozef Gruska Jiří Zlatuška

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kesten, Y., Pnueli, A. (1998). Modularization and abstraction: The keys to practical formal verification. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055757

Download citation

  • DOI: https://doi.org/10.1007/BFb0055757

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64827-7

  • Online ISBN: 978-3-540-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics