Abstract
We consider one-to-one embeddings of the n-dimensional hypercube into grids with 2n vertices and present lower and upper bounds and asymptotic estimates for minimal dilation, edge-congestion, and their mean values. We also introduce and study two new cost-measures for these embeddings, namely the sum over i=1, ..., n of dilations and the sum of edge-congestions caused by the hypercube edges of the ith dimension. It is shown that, in the simulation via the embedding approach, such measures are much more suitable for evaluating the slowdown of uniaxial hypercube algorithms then the traditional cost measures.
This work was supported by the DFG-Sonderforschungsbereich 376 “Massive Parallelität: Algorithmen, Entwurfsmethoden, Anwendungen” and by the EC ESPRIT Long Term Research Project 20244 “ALCOM-IT”.
Preview
Unable to display preview. Download preview PDF.
References
Annexstein, F.: Embedding hypercubes and related networks into mesh-connected processor arrays. J. Parall. Distr. Comput., 23 (1994), 72–79.
Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger M., Schroeder U.-P.: The congestion of n-cube layout on a rectangular grid, to appear in Disc. Mathematics.
Bezrukov, S.L., Röttger, M., Schroeder, U.-P.: Embedding of hypercubes into grids. Technical Report tr-sfb-95-1, University of Paderborn, (1995).
Bollobás, B., Leader, I.: Compressions and isoperimetric inequalities. J. Comb. Th., A-56 (1991), 47–62.
Harper, L.H.: Optimal assignment of numbers to vertices. J. Sos. Ind. Appl. Math, 12 (1964), 131–135.
Harper, L.H.: Optimal numberings and isoperimetric problems on graphs. J. Comb. Theory, 1 (1966), No.3, 385–393.
Katona, G.O.H.: A theorem on finite sets. In: Theory of Graphs, Akademia Kiado, Budapest, (1968), 187–207.
Lai, T.-H., Sprague, A.P.: Placement of the processors of a hypercube. IEEE Trans. Comp., 40 (1991), No.6, 714–722.
Nakano, K.: Linear layout of generalized hypercubes. In: Proc. Graph-Theoretic Concepts in Computer Science, LNCS 790, Springer Verlag, (1994), 364–375.
Zienicke, P.: Embedding hypercubes in 2-dimensional meshes. Humboldt-Universität zu Berlin, (manuscript).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger, M., Schroeder, U.P. (1998). Embedding of hypercubes into grids. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055820
Download citation
DOI: https://doi.org/10.1007/BFb0055820
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64827-7
Online ISBN: 978-3-540-68532-6
eBook Packages: Springer Book Archive