Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Embedding of hypercubes into grids

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1998 (MFCS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1450))

Abstract

We consider one-to-one embeddings of the n-dimensional hypercube into grids with 2n vertices and present lower and upper bounds and asymptotic estimates for minimal dilation, edge-congestion, and their mean values. We also introduce and study two new cost-measures for these embeddings, namely the sum over i=1, ..., n of dilations and the sum of edge-congestions caused by the hypercube edges of the ith dimension. It is shown that, in the simulation via the embedding approach, such measures are much more suitable for evaluating the slowdown of uniaxial hypercube algorithms then the traditional cost measures.

This work was supported by the DFG-Sonderforschungsbereich 376 “Massive Parallelität: Algorithmen, Entwurfsmethoden, Anwendungen” and by the EC ESPRIT Long Term Research Project 20244 “ALCOM-IT”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annexstein, F.: Embedding hypercubes and related networks into mesh-connected processor arrays. J. Parall. Distr. Comput., 23 (1994), 72–79.

    Article  MATH  Google Scholar 

  2. Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger M., Schroeder U.-P.: The congestion of n-cube layout on a rectangular grid, to appear in Disc. Mathematics.

    Google Scholar 

  3. Bezrukov, S.L., Röttger, M., Schroeder, U.-P.: Embedding of hypercubes into grids. Technical Report tr-sfb-95-1, University of Paderborn, (1995).

    Google Scholar 

  4. Bollobás, B., Leader, I.: Compressions and isoperimetric inequalities. J. Comb. Th., A-56 (1991), 47–62.

    Article  MATH  Google Scholar 

  5. Harper, L.H.: Optimal assignment of numbers to vertices. J. Sos. Ind. Appl. Math, 12 (1964), 131–135.

    Article  MATH  MathSciNet  Google Scholar 

  6. Harper, L.H.: Optimal numberings and isoperimetric problems on graphs. J. Comb. Theory, 1 (1966), No.3, 385–393.

    Article  MATH  MathSciNet  Google Scholar 

  7. Katona, G.O.H.: A theorem on finite sets. In: Theory of Graphs, Akademia Kiado, Budapest, (1968), 187–207.

    Google Scholar 

  8. Lai, T.-H., Sprague, A.P.: Placement of the processors of a hypercube. IEEE Trans. Comp., 40 (1991), No.6, 714–722.

    Article  MathSciNet  Google Scholar 

  9. Nakano, K.: Linear layout of generalized hypercubes. In: Proc. Graph-Theoretic Concepts in Computer Science, LNCS 790, Springer Verlag, (1994), 364–375.

    Google Scholar 

  10. Zienicke, P.: Embedding hypercubes in 2-dimensional meshes. Humboldt-Universität zu Berlin, (manuscript).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luboš Brim Jozef Gruska Jiří Zlatuška

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger, M., Schroeder, U.P. (1998). Embedding of hypercubes into grids. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055820

Download citation

  • DOI: https://doi.org/10.1007/BFb0055820

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64827-7

  • Online ISBN: 978-3-540-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics