Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the chromatic index and the cover index of a multigraph

  • Conference paper
  • First Online:
Theory and Applications of Graphs

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 642))

Abstract

The problem of determining bounds for the chromatics index and the cover index of a multigraph is considered. Results stated include (I) a bound for the cover index which is analogous to the well-known bound for the chromatic index due to Shannon, (II) a bound for the chromatic index (and analogous bound for the cover index) which establishes conjectures by Berge and Bosak.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Berge, Graphes et Hpergraphes. Dunod, Paris (1970). (eng. Tr. Graphs and Hypergraphs, North-Holland 1973.)

    Google Scholar 

  2. J. Bosák, Chromatic Index of finite and infinite graphs. Czechoslavak Math. J. 22(1972), 272–290.

    Google Scholar 

  3. R. P. Gupta, Studies in the Theory of Graphs. Thesis, Tata Inst. Fund. Res., Bombay (1967).

    Google Scholar 

  4. R. P. Gupta, The chromatic index and the degree of a graph. Notices Amer. Math. Soc. 13, No. 6 (1966) Abstract GGT-429.

    Google Scholar 

  5. R. P. Gupta, A theorem on the cover index of an s-graph. Notices Amer. Math. Soc. 13, No. 6 (1966) Abstract 637–14.

    Google Scholar 

  6. R. P. Gupta, A decomposition theorem for bipartite graphs. Theorie des Graphes, Rome I.C.C. (P. Rosenstiehl, Ed.)

    Google Scholar 

  7. R. P. Gupta, On decompositions of a multigraph into spanning subgraphs. Bull. Am. Math. Soc. 80 (1974).

    Google Scholar 

  8. J. Fiamcik and E. Jcovic, Coloring the edges of a multigraph. Arch. Math. 21(1970).

    Google Scholar 

  9. D. König, Theorie der endlichen und unendlichen graphen. Leipzig (1936); reprinted by Chelsea, New York (1950).

    Google Scholar 

  10. O. Ore, The Four Color Problem, Academic Press, New York (1967).

    MATH  Google Scholar 

  11. C. E. Shannon, A theorem on coloring the lines of a network, J. Math. and Phys. 28 (1949).

    Google Scholar 

  12. V. G. Vizing, On an estimate of the chromatic class of a p-graph (Russian) Diskret Analiz, 3 (1964).

    Google Scholar 

  13. V. G. Vizing, Critical graphs with a given chromatic class (Russian) Diskret, Analiz, 5 (1965).

    Google Scholar 

  14. V. G. Vizing, On the chromatic class of a multigraph, Cybernetics, 1, No. 3 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupta, R.P. (1978). On the chromatic index and the cover index of a multigraph. In: Alavi, Y., Lick, D.R. (eds) Theory and Applications of Graphs. Lecture Notes in Mathematics, vol 642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0070378

Download citation

  • DOI: https://doi.org/10.1007/BFb0070378

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08666-6

  • Online ISBN: 978-3-540-35912-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics