Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parallelization of a 3D FD-TD code for the Maxwell equations using MPI

  • Conference paper
  • First Online:
Applied Parallel Computing Large Scale Scientific and Industrial Problems (PARA 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1541))

Included in the following conference series:

Abstract

We have parallelized an existing code that solves the Maxwell equations in the time domain. The code uses finite differences in 3D for discretization. The method is based on a leap frog scheme introduced by Yee in 1966. The first order Mur scheme is used as outer (absorbing) boundary condition. Wave excitation is done with dipoles, i.e. using point sources. All parts of this scheme are local in space. It is therefore suitable to parallelize the code using domain decomposition. This is done with MPI. It is possible to achieve negligible communication time on an IBM SP-2 when each node houses a large enough problem. This is demonstrated with a problem size of 100×p·100×100 where p is the number of processors. We also give speed-up results for the IBM SP-2 and a Cray J932.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. A. Borovikov and B. Y. Kinber. Geometrical Theory of Diffraction. IEE, UK, 1994.

    MATH  Google Scholar 

  2. C. Christopoulos. The Transmission-Line Modeling Method: TLM. IEEE Press and Oxford University Press, 1995.

    Google Scholar 

  3. R. F. Harrington. Field Computations by Moment Methods. The Macmillan Co., New York, 1968.

    Google Scholar 

  4. V. Shankar, W. Hall, and H. Mohammadian. A CFD-based finite-volume procedure for computational electromagnetics—interdisciplinary applications of CFD methods. AIAA, pages 551–564, 1989.

    Google Scholar 

  5. P. P. Silvester and R. L. Ferrari. Finite Elements for Electrical Engineers 2nd Ed. Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  6. A. Taflove. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston, MA, 1995.

    Google Scholar 

  7. Large Scale FDTD. http://www.nada.kth.se/~ulfa/CEM.html.

    Google Scholar 

  8. K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Ant. Prop., AP-14(3):302–307, May 1966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bo Kågström Jack Dongarra Erik Elmroth Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andersson, U. (1998). Parallelization of a 3D FD-TD code for the Maxwell equations using MPI. In: Kågström, B., Dongarra, J., Elmroth, E., Waśniewski, J. (eds) Applied Parallel Computing Large Scale Scientific and Industrial Problems. PARA 1998. Lecture Notes in Computer Science, vol 1541. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0095313

Download citation

  • DOI: https://doi.org/10.1007/BFb0095313

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65414-8

  • Online ISBN: 978-3-540-49261-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics