Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A diffraction tomography method for medical imaging implemented on high performance computing environment

  • Track C1: (Industrial) End-user Applications of HPCN
  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1593))

Included in the following conference series:

  • 127 Accesses

Abstract

The efficient implementation of a diffraction tomography method for medical imaging is addressed within the framework of High Performance Computing (HPC) environment. A non-linear optimization method for the solution of the inverse scattering problem is implemented on a shared memory model computer. Linear speed-up and significant reduction in the total execution time is achieved when the program is executed in parallel, enabling the feasibility of the method for realistic medical imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Shewell, and E. Wolf, “Inverse diffraction and a new reciprocity theorem,” J. Opt. Soc. Amer., vol. 58, pp. 1596–1603, 1968.

    Article  Google Scholar 

  2. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrasonic Imaging, vol. 4, pp. 336–350, 1982.

    Article  Google Scholar 

  3. M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first order diffraction tomography,” IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 860–873, 1984.

    Article  Google Scholar 

  4. W. C. Chew, and Y. M. Wang, “Reconstruction of the two dimensional permittivity using the distorted Born iterative method,” IEEE Trans. Medical Imaging, vol. 9, pp. 218–255, 1990.

    Article  Google Scholar 

  5. S. Caorsi, G. L. Gragnani, and M. Pastorino, “Two-dimensional microwave imaging by a numerical inverse scattering solution,” IEEE Trans. Microwave Theory Tech., vol. MTT-38, pp. 981–989, 1990.

    Article  Google Scholar 

  6. T. M. Habashy, M. L Oristaglio, and A. De Hoop, “Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity,” Radio Science, vol. 29, pp. 1101–1118, 1994.

    Article  Google Scholar 

  7. D. T. Borup, S. A. Johnson, W. W. Kim and M. J. Berggren, “Nonperturbative diffraction tomography via Gauss-Newton iteration applied to the scattering integral equation,” Ultrasonic Imaging, vol. 14, pp. 69–85, 1992.

    Article  Google Scholar 

  8. R. Kleinman, and P. van den Berg, “An extended range-modified gradient technique for profile inversion,” Radio Science, vol. 29, pp. 877–884, 1993.

    Google Scholar 

  9. D. Colton, and P. Monk, “A modified dual space method for solving the electromagnetic inverse scattering problem for an infinite cylinder,” Inverse Problems, vol. 10, pp. 87–107, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. A. Maniatis, K. S. Nikita and N. K. Uzunoglu, “A diffraction tomography technique using spectral domain moment method and nonlinear optimization,” in Applied Computational Electromagnetics, N. Uzunoglu Ed., NATO—ASI Series, Berlin: Springer Verlag (in press).

    Google Scholar 

  11. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Berlin: Springer-Verlag, 1998.

    MATH  Google Scholar 

  12. J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross-section shape,” IEEE Trans. Antennas Propagat., vol. AP-13, pp. 334–341, 1965.

    Article  Google Scholar 

  13. T. A. Maniatis, Development of Inverse Scattering Methods for Dielectric Object Imaging. PhD Thesis, Department of Electrical and Computer Engineering, National Technical University of Athens, 1998.

    Google Scholar 

  14. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI—The Complete Reference. Cambridge: M.I.T. Press, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Sloot Marian Bubak Alfons Hoekstra Bob Hertzberger

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Maniatis, T.A., Nikita, K.S., Voliotis, K. (1999). A diffraction tomography method for medical imaging implemented on high performance computing environment. In: Sloot, P., Bubak, M., Hoekstra, A., Hertzberger, B. (eds) High-Performance Computing and Networking. HPCN-Europe 1999. Lecture Notes in Computer Science, vol 1593. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100579

Download citation

  • DOI: https://doi.org/10.1007/BFb0100579

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65821-4

  • Online ISBN: 978-3-540-48933-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics