Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Performance assessment of parallel spectral analysis: Towards a practical performance model for parallel medical applications

  • Track C2: Computational Science
  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1593))

Included in the following conference series:

  • 83 Accesses

Abstract

We present a parallel, medical application for the analysis of dynamic positron emission tomography (PET) images together with a practical performance model. The parallel application improves the diagnosis for a patient (e. g. in epilepsy surgery) because it enables the fast computation of parametric images on a pixel level in contrast to the traditionally used region of interest (ROI) approach. We derive a simple performance model from the application context and demonstrate the accuracy of the model to predict the runtime of the application on a NOW. The model is used to determine an optimal value for the length of the messages with regard to the per message overhead and the load imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov, A., Ionescu, M., Schauser, K., and Scheiman, C. LogGP: Incorporating Long Messages into the LogP Model. Proc. of the 7th Annual ACM Symp. on Parallel Algorithms and Architectures (1995), 95–105.

    Google Scholar 

  2. Arabnia, H. High-Performance Computing and Applications in Image Processing and Computer Vision. In High Performance Computing (1997), C. Polychronopoulos, K. Joe, K. Araki, and M. Amamiya, Eds., vol. 1336 of Lecture Notes in Computer Science, Springer-Verlag, p. 72.

    Google Scholar 

  3. Clark, D., Jacobson, V., Romkey, J., and Salwen, H. An Analysis of TCP Processing Overhead. IEEE Communications Magazine (June 1989), 23–29.

    Google Scholar 

  4. Culler, D., Karpand, R., Patterson, D., Sahay, A., Schausser, K., Santos, E., Subramonian, R., and von Eicken, T. LogP: Towards a Realistic Model of Parallel Computation. In Proc. ACM Symp. on Principles and Practice of Parallel Programming (May 1993).

    Google Scholar 

  5. Cunningham, V. J., and Jones, T. Spectral Analysis of Dynamic PET Studies. Journal of Cerebral Blood Flow and Metabolism 13 (1993), 15–23.

    Google Scholar 

  6. Fortune, S., and Wyllie, J. Parallelism in Random Access Machines. In Proceedings of the Tenth ACM Symposium Theory of Computing (May 1978).

    Google Scholar 

  7. Hockney, R. Performance Parameters and Bechmarking of Supercomputers. Parallel Computing 17 (1991), 1111–1130.

    Article  Google Scholar 

  8. Hockney, R. The Communication Challenge for MPPs: Intel Paragon and Meiko CS-2. Parallel Computing 20 (1994), 389–309.

    Article  Google Scholar 

  9. Hwang, K., and Xu, Z.Scalable Parallel Computing. Mc Graw-Hill, 1998.

    Google Scholar 

  10. Lawson, C. L., and Hanson, R. J.Solving Least Squares Problems. Prentice Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs, NJ, 1974.

    MATH  Google Scholar 

  11. Munz, F., Stephan, T., Maier, U., Ludwig, T., Bode, A., Ziegler, S., Nekolla, S., Bartenstein, P., and Schwaiger, M. NOW Based Parallel Reconstruction of Functional Images. In Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Computing (Los Alamitos, California, USA, April 1998), B. Werner, Ed., IEEE Computer Society Technical Committee on Parallel Processing, pp. 210–214.

    Google Scholar 

  12. Rugina, R., and Schauser, K. E. Predicting the Running Times of Parallel Programs by Simulation. In Proceedings of the 12th International Parallel Processing Symposium and 9th Symposium on Parallel and Distributed Processing, Orlando, FL (April 1998).

    Google Scholar 

  13. Singh, J. P., Rothberg, E., and Gupta, A. Modelling Communication in Parallel Algorithms: A Fruitful Interaction between Theory and Systems? Proc. of the 10th Annual ACM Symposium on Parallel Algorithms and Architectures (1994).

    Google Scholar 

  14. Valiant, L. A bridging model for parallel computation. Comm. of ACM 33, 8 (1990), 103–111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Sloot Marian Bubak Alfons Hoekstra Bob Hertzberger

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Munz, F., Ludwig, T., Ziegler, S., Bartenstein, P., Schwaiger, M., Bode, A. (1999). Performance assessment of parallel spectral analysis: Towards a practical performance model for parallel medical applications. In: Sloot, P., Bubak, M., Hoekstra, A., Hertzberger, B. (eds) High-Performance Computing and Networking. HPCN-Europe 1999. Lecture Notes in Computer Science, vol 1593. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100604

Download citation

  • DOI: https://doi.org/10.1007/BFb0100604

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65821-4

  • Online ISBN: 978-3-540-48933-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics