Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using lattice theory in higher order logic

  • Conference paper
  • First Online:
Theorem Proving in Higher Order Logics (TPHOLs 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1125))

Included in the following conference series:

Abstract

We describe an implementation of general (abstract) lattice theory in the HOL system and its use in transformational reasoning within concrete instances of lattices, using the window inference of HOL. The implementation is extensible; users can add new instances of lattices and all the existing transformation rules are then available for the added structures. As a particularly promising application we briefly describe how our system can be used as part of a tool for transformational reasoning about programs (program refinement).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J.R. Back. A calculus of refinements for program derivations. Acta Informatica, 25:593–624, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  2. R.J.R. Back and J. von Wright. Duality in specification languages: a latticetheoretical approach. Acta Informatica, 27:583–625, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  3. R.J.R. Back and J. von Wright. Refinement concepts formalised in higher-order logic. Formal Aspects of Computing, 2:247–272, 1990.

    Article  Google Scholar 

  4. M.J.C. Gordon. HOL: A proof generating system for higher-order logic. In VLSI Specification, Verification and Synthesis. Kluwer Academic Publishers, 1988.

    Google Scholar 

  5. M.J.C. Gordon, R. Milner and C. Wadsworth. Edinburgh LCF: A mechanised logic of computation. In LNCS 78. Springer-Verlag, 1979.

    Google Scholar 

  6. J. Grundy. Window Inference in the HOL System. In Proc. of the Int. Workshop on the HOL Theorem Proving System and Its Applications, Aug. 1991. IEEE Computer Society Press.

    Google Scholar 

  7. E. Gunter. Doing algebra in higher order logic. In the HOL system documentation, Cambridge, 1990.

    Google Scholar 

  8. E. Gunter. The Implementation and Use of Abstract Theories in HOL In Proc. of the Third HOL Users Meeting, Aarhus, Denmark, October 1990. Technical Report DAIMI PB — 340, 1990.

    Google Scholar 

  9. T. Långbacka, R. Rukšėnas and J. von Wright. TkWinHOL: A tool for doing window inference in HOL. In LNCS 971, 245–260. Springer-Verlag, 1995.

    Google Scholar 

  10. F. Regensburger. HOLCF: Higher Order Logic of Computable Functions. In LNCS 971, 293–307. Springer-Verlag, 1995.

    Google Scholar 

  11. P.J. Robinson and J. Staples. Formalising the hierarchical structure of practical mathematical reasoning. Logic and Computation, 1:47–61, 1993.

    Article  MathSciNet  Google Scholar 

  12. P.J. Windley. Abstract Theories in HOL. In Proc. of the Int. Workshop on the HOL Theorem Proving System and Its Applications, September 1992. IFIP Transactions A-20, 197–210.

    Google Scholar 

  13. J. von Wright. Doing Lattice Theory in Higher Order Logic. In Technical Report 136, Reports on Computer Science and Mathematics, Series A. Ã…bo Akademi, Turku, 1992.

    Google Scholar 

  14. J. von Wright. Program refinement by theorem prover. In Proc. 6th Refinement Workshop, London, January 1994. Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerhard Goos Juris Hartmanis Jan van Leeuwen Joakim von Wright Jim Grundy John Harrison

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laibinis, L. (1996). Using lattice theory in higher order logic. In: Goos, G., Hartmanis, J., van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (eds) Theorem Proving in Higher Order Logics. TPHOLs 1996. Lecture Notes in Computer Science, vol 1125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105413

Download citation

  • DOI: https://doi.org/10.1007/BFb0105413

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61587-3

  • Online ISBN: 978-3-540-70641-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics