Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A survey of the energy transformations in living matter

  • Conference paper
  • First Online:
Ergebnisse der physiologie biologischen chemie und experimentellen pharmakologie

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, A., and D. J. Brown: Purine studies. I. Stability to acid and alkali. Solubility, ionisation, comparison with pteridines. J. Chem. Soc. (Lond.) 1954, 2060.

    Google Scholar 

  • Arnon, D. I.: The chloroplast as a complete photosynthesis unit. Science (Lancaster, Pa.) 122, 9 (1955).

    CAS  Google Scholar 

  • —and F. R. Whatley: A new glyceraldehyde phosphate dehydrogenase from photosynthetic tissues. Nature (Lond.) 173, 1132 (1954).

    Article  CAS  Google Scholar 

  • Aubel, E.: Remarques sur la croissance du bacille coli en milieu chimiquement défini. Ann. Physiol. et Physiochim. biol. 2, 73 (1926).

    CAS  Google Scholar 

  • Axelrod, B., and R. Jang: Purification and properties of phosphoriboisomerase from alfalfa. J. of Biol. Chem. 202, 619 (1954).

    Google Scholar 

  • Bach, S. J.: The metabolism of protein constituents in the mammalian body. Oxford: Clarendon Press 1952.

    Google Scholar 

  • Ball, E. G.: Über die Oxydation und Reduktion der drei Cytochromokomponenten. Biochem. Z. 295, 262 (1938).

    CAS  Google Scholar 

  • — Energy relationships of the oxidative enzymes. Ann. New York Acad. Sci. 45, 363 (1944).

    Article  CAS  Google Scholar 

  • Baranowski, T.: Crystalline glycerophosphate dehydrogenase from rabbit muscle. J. of Biol. Chem. 180, 535 (1949).

    CAS  Google Scholar 

  • Beatty, C. H., and E. S. West: The effect of substances related to the tricarboxylic acid cycle upon ketosis. J. of Biol. Chem. 190, 603 (1951).

    CAS  Google Scholar 

  • Beinert, H., D. E. Green, P. Hele, H. Hift, R. W. v. Korff and C. V. Ramakrishnan: The acetate activating enzyme system of heart muscle. J. of Biol. Chem. 203, 35 (1953).

    CAS  Google Scholar 

  • Belitzer, V. A.: La régulation de la respiration musculaire par les transformations du phosphogène. Enzymologia (Den Haag) 6, 1 (1939).

    Google Scholar 

  • Berg, P.: Participation of adenyl-acetate in the acetate-activating system. J. Amer. Chem. Soc. 77, 3163 (1955).

    Article  CAS  Google Scholar 

  • —, and W. K. Joklik: Transphorylation between nucleoside polyphosphates. Nature (Lond.) 172, 1008 (1953).

    Article  CAS  Google Scholar 

  • —: Enzymic phosphorylation of nucleoside diphosphate. J. of Biol. Chem. 210, 657 (1954).

    CAS  Google Scholar 

  • Bernal, J. D.: The origin of life. New Biology, vol. 16, p. 28. London: Penguin Books 1954.

    Google Scholar 

  • Black, S., and N. G. Wright: Homoserine dehydrogenase. J. of Biol. Chem. 213, 51 (1955).

    CAS  Google Scholar 

  • Blakley, R. L.: The metabolism and antiketogenic effects of sorbitol. Sorbitol dehydrogenase. Biochemic. J. 49, 257 (1951).

    CAS  Google Scholar 

  • Blum, J. F.: Time’s arrow and evolution. Princeton, New Jersey: Princeton University Press 1951.

    Google Scholar 

  • Borgström, B., H. C. Suddruth and A. L. Lehninger: Phosphorylation coupled to the reduction of cytochrome c by β-hydroxybutyrate. J. of Biol. Chem. 215, 571 (1955).

    Google Scholar 

  • Borsook, H.: Enzymatic syntheses of peptide bonds. In: Chemical pathways of metabolism, vol. 2, p. 173, edit. by D. M. Greenberg. New York: Academic Press Inc. 1954.

    Google Scholar 

  • —and R. C. Warner: The oxidation of ascorbic acid and its reduction in vitro and in vivo. J. of Biol. Chem. 117, 237 (1937).

    CAS  Google Scholar 

  • —and H. M. Huffman: Sulphydryl oxidation reduction potentials derived from thermal data. J. of Biol. Chem. 117, 281 (1937).

    CAS  Google Scholar 

  • —, and H. M. Huffman: Some thermodynamical considerations of amino acids, peptides and related substances. In: Chemistry of the amino acids and proteins, edit. by C. L. A. Schmidt. Springfield: Ch. C. Thomas 1938.

    Google Scholar 

  • Boyer, P. D., and H. L. Segal: Sulphydryl groups of glyceraldehyde 3-phosphate dehydrogenase and acyl enzyme formation. In: A symposium on the mechanism of enzyme action, edit. by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Braunstein, A. E.: Transamination and the integrative functions of the dicarboxylic acids in nitrogen metabolism. Adv. Protein Chem. 3, 1 (1947).

    Article  PubMed  CAS  Google Scholar 

  • Brewer, C. R., and C. H. Werkman: The aerobic dissimilation of citric acid by coliform bacteria. Enzymologia (Den Haag) 8, 318 (1940).

    CAS  Google Scholar 

  • Brink, N. G.: Beef liver glucose dehydrogenase. I. Purification and properties. Acta chem. scand. (Copenh.) 7, 1081 (1953).

    Article  CAS  Google Scholar 

  • Brodie, A., and F. Lipmann: Identification of a gluconolactonase. J. of Biol. Chem. 212, 677 (1955).

    CAS  Google Scholar 

  • Bücher, T.: Über ein phosphatübertragendes Gärungsferment. Biochim. et Biophysica. Acta 1, 292 (1947).

    Article  Google Scholar 

  • Bullock, M. W., J. A. Brockman jr., E. L. Patterson, J. V. Pierce and E. L. R. Stokstad: Sythesis of DL-thioctic acid, J. Amer. Chem. Soc. 74, 1868, 3455 (1952).

    Article  CAS  Google Scholar 

  • Burk, D.: A colloquial consideration of the Pasteur and Neo-Pasteur effects. Cold Spring Harbor Symp. on Quant. Biol. 7, 420 (1939).

    CAS  Google Scholar 

  • Burton, K.: The free-energy change associated with the hydrolysis of acetyl coenzyme A. Biochemic. J. 59, 44 (1955).

    CAS  Google Scholar 

  • —and H. A. Krebs: The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenosine-triphosphate. Biochemic. J. 54, 94 (1953).

    CAS  Google Scholar 

  • —, and T. H. Wilson: The free-energy changes for the reduction of diphosphopyridine nucleotide and the dehydrogenation of L-malate and L-glycerol 1-phosphate. Biochemic. J. 54, 86 (1953).

    CAS  Google Scholar 

  • Burton, R. M., and E. R. Stadtman: The oxidation of acetaldehyde to acetyl coenzyme A. J. of Biol. Chem. 202, 873 (1953).

    CAS  Google Scholar 

  • Butler, J. A. V., C. N. Ramchandani and D. W. Thomson: The solubility of non-electrolytes. Part I. The free-energy of hydration of some aliphatic alcohols. J. Chem. Soc. (Lond.) 1935, 280.

    Google Scholar 

  • Calvin, M.: The photosynthetic carbon cycle. Proc. 3rd. Int. Congr. of Biochem., Brussels 1955, edit. by C. Liebecq, p. 211. New York: Academic Press 1956.

    Google Scholar 

  • —and J. A. Bassham: The photosynthetic carbon cycle. Federat. Proc. 14, 188 (1955).

    Google Scholar 

  • Cammarata, P. S., and P. P. Cohen: The scope of the transamination reaction in animal tissues. J. of Biol. Chem. 187, 439 (1950).

    CAS  Google Scholar 

  • Campbell, J. J. R., and I. C. Gunsalus: Citric acid fermentation by streptococci and lactobacilli. J. Bacter. 48, 71 (1944).

    CAS  Google Scholar 

  • Chance, B.: Enzymes in action in living cells: the steady state of reduced pyridine nucleotides. Harvey Lect. 49, 145 (1955).

    Google Scholar 

  • Chou, T. C. and F. Lipmann: Separation of acetyl transfer enzymes in pigeon liver extract. J. of Biol. Chem. 196, 89 (1952).

    CAS  Google Scholar 

  • Clark, W. M.: Topics in physical chemistry, 1st edit. London: Ballière, Tyndall and Cox 1948.

    Google Scholar 

  • Clarke, E. W., and B. C. Whaler: The utilization of 14C-labelled amino acids by the isolated mammalian heart. J. of Physiol. 117, 9P (1952).

    Google Scholar 

  • Clarke, T. H., and G. Stegeman: Heats of combustion of some mono-and disaccharides. J. Amer. Chem. Soc. 61, 1726 (1939).

    Article  CAS  Google Scholar 

  • Cohen, G. N.: Nature et mode de formation des acides volatils trouvés dans les cultures de bactéries anaérobies strictes. Ann. Inst. Pasteur 77, 471 (1949).

    CAS  Google Scholar 

  • —, and G. Cohen-Bazire: Fermentation of pyruvate, β-hydroxybutyrate and of C4-dicarboxylic acids by some butyric acid forming, organisms. Nature (Lond.) 162, 578 (1948).

    Article  CAS  Google Scholar 

  • Cohen, S. S.: Comparative biochemistry and chemotherapy. In: Cellular metabolism and infections p. 84, edit. by E. Racker. New York: Academic Press, Inc. 1954.

    Google Scholar 

  • Cohen-Bazire, G., and G. N. Cohen: Études sur le mécanisme de la fermentation acétono-butylique. I. Synthèse d’acide butyrique à partir de pyruvate. Ann. Inst. Pasteur 77, 718 (1949).

    CAS  Google Scholar 

  • — et M. Raynaud: Action inhibitrice d l’arsénite de sodium sur la production d’acide butyrique á partir de pyruvate, chez. Cl. sacharobutyricum. C. r. Soc. Biol. Paris 142, 1221 (1948).

    CAS  Google Scholar 

  • Cohn, M.: Phosphorus metabolism, vol. 1, p. 374, edit. by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • — Some mechanisms of clearage of adenosine triphosphate and 1,3 phosphoglyceric acid. Biochim. et Biophysica Acta 20, 92 (1956).

    Article  CAS  Google Scholar 

  • Colowick, S. P., and E. W. Sutherland: Polysaccharide synthesis from glucose by means of purified enzymes. J. of Biol. Chem. 144, 423 (1942).

    CAS  Google Scholar 

  • Cook, R. P.: Pyruvic acid in bacterial metabolism. Biochemic. J. 24, 1526 (1930).

    CAS  Google Scholar 

  • Coon, M. J., W. G. Robinson and B. K. Bachhawat: Enzymatic studies on the biological degradation of the branched chain amino acids. In: Symposium on amino acid metabolism, p. 431, edit. by W. D. McElroy and H. B. Glass. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Cooper, C., T. M. Devlin and A. L. Lehninger: Oxidative phosphorylation in an enzyme fraction from mitochondrial extracts. Biochim. et Biophysica Acta 18, 159 (1955).

    Article  CAS  Google Scholar 

  • Cori, G. T., and C. F. Cori: Glucose 6-phosphatase of the liver in glycogen storage disease. J. of Biol. Chem. 199, 661 (1952).

    CAS  Google Scholar 

  • Cori, O., and F. Lipmann: The primary oxidation product of enzymatic glucose 6-phosphate oxidation. J. of Biol. Chem. 194, 417 (1952).

    CAS  Google Scholar 

  • Crandall, D. I.: Homogentisic acid oxidase. J. of Biol. Chem. 212, 565 (1955)(a).

    CAS  Google Scholar 

  • — The ferrous ion activation of homogentisic acid oxidase and other aromatic ring-splitting oxidases. In: Symposium on amino acid metabolism, p. 867, edit. by W. D. McElroy and H. B. Glass. Baltimore: Johns Hopkins Press 1955.(b)

    Google Scholar 

  • Crane, R. K., and A. Sols: The non-competitive inhibition of brain hexokinase by glucose 6-phosphate and related compounds. J. of Biol. Chem. 210, 597 (1954).

    CAS  Google Scholar 

  • Dauvillier, A., and E. Desguin: La genèse de la vie, phase de l’évolution géochimique. Paris: Hermans 1942.

    Google Scholar 

  • Davenport, H. E., and R. Hill: The preparation and some properties of cytochrome f. Proc. Roy. Soc. Lond., Ser. B 139, 327 (1952).

    Article  CAS  Google Scholar 

  • Davies, D. D.: In press. Biochemic. J. 1956. *** DIRECT SUPPORT *** A0535004 00023

    Google Scholar 

  • Davies, R. E.: Relations between active trasport and metabolism in some isolated tissues and mitochondria. In: Active transport and secretion. Sympos. Soc. Exper. Biol. 8, 453 (1954).

    CAS  Google Scholar 

  • Davies, R. E., and H. A. Krebs: Biochemical aspects of the transport of ions by nervous tissue. Biochem. Soc. Symposia 1952, No 8, 77.

    Google Scholar 

  • Davis, B. D.: Biosynthesis of the aromatic amino acids. In: A symposium on amino acid metabolism, p. 799, edit. by W. D. McElroy and B. Glass, Baltimore: Johns Hopkins Press. 1955

    Google Scholar 

  • De la Haba, G. L., E. Racker and I. G. Leder: Crystalline transketolase from bakers’ yeast: Isolation and properties. J. of Biol. Chem. 214, 409 (1955).

    Google Scholar 

  • Deuel, H. R., S. Murray and L. F. Hallman: A comparison of the ketolytic effect of succinic acid with glucose. Proc. Soc. Exper. Biol. a. Med. 37, 413 (1937).

    Google Scholar 

  • Dickens, F.: Mechanism. of carbohydrate oxydation. Nature (Lond.) 138, 1057 (1936).

    Article  CAS  Google Scholar 

  • — Oxidation of phosphohexonate and pentose phosphoric acids by yeast enzymes. I. Oxidation of phosphohexonate. II. Oxidation of pentose phosphoric acids. Biochemic. J. 32, 1626 (1938) (a).

    CAS  Google Scholar 

  • — Yeast fermentation of pentose phosphoric acids. Biochemic. J. 32, 1645 (1938) (b).

    CAS  Google Scholar 

  • —, and D. H. Williamson: Transformation of pentose phosphates by enzymes of animal origin. Nature (Lond.) 176, 400 (1955).

    Article  CAS  Google Scholar 

  • Dische, Z.: Phosphorylierung der im Adenosin enthaltenen d-Ribose nnd nachfolgender Zerfall des Esters unter Triosephosphatbildung im Blute. Naturwiss. 26, 252 (1938).

    Article  CAS  Google Scholar 

  • — Synthesis of hexosemono-and diphosphate from adenosine and ribose-5-phosphate in human blood. In: Phosphorus metabolism, vol. I, p. 171, edit. by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • Dixon, M.: Multi-enzyme systems. Cambridge 1949.

    Google Scholar 

  • Ehrensvärd, G.: Metabolism of amino acids and proteins. Annual Rev. Biochem. 24, 275 (1955).

    Article  Google Scholar 

  • Euler, H. v., E. Adler and G. Günther: Zur Kenntnis der Dehydrierung von α-Glycerin-Phosphorsäure im Tierkörper. Z. physiol. Chem. 249, 1 (1937).

    Google Scholar 

  • Fantl, P., and N. Rome: Dephosphorylation in liver extracts. Austral. J. Exper. Biol. a. Med. Sci. 23, 21 (1945).

    Article  Google Scholar 

  • Findlay, A.: The solubility of mannitol, picric acid and anthracene. J. Chem. Soc. (Lond.) 1902, 1217.

    Google Scholar 

  • Gibbs, M., and B. L. Horecker: The mechanism of pentose phosphate conversion to hexose monophosphate. II. With pea leaf and pea root preparations. J. of Biol. Chem. 208, 813 (1954).

    CAS  Google Scholar 

  • Gillespie, R. J., G. A. Maw and C. A. Vernon: The concept of phosphate bond energy. Nature (Lond.) 171, 1147 (1953).

    Article  CAS  Google Scholar 

  • Gilvarg, C.: Prephenic acid and the aromatization step in the synthesis of phenylalanine. In: A symposium on amino acid metabolism, p. 812, edit. by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Glock, G. E., and P. McLean: The determination of oxidised and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in animal tissues. Biochemic. J. 61, 381 (1955) (a).

    CAS  Google Scholar 

  • —: Levels of oxidized and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in animal tissues. Biochem. J. 61, 388 (1955) (b).

    PubMed  CAS  Google Scholar 

  • Goldschmidt, V. M.: Geochemical aspects of the origin of complex organic molecules on the earth, as precursors to organic life. New Biology, vol. 12, p. 97. London: Penguin Books 1952.

    Google Scholar 

  • Gormori, G.: Hexosediphosphatase. J. of Biol. Chem. 48, 139 (1943).

    Google Scholar 

  • Green, D. E.: Studies on reversible dehydrogenase systems. II. The reversibility of the xanthine oxidase system. Biochemic. J. 28, 1550 (1934).

    CAS  Google Scholar 

  • Green, D. E.: Enzymes in metabolic sequences. In: Chemical pathways of metabolism, vol. 1, p. 27, edit. by D. M. Greenberg. 1954 (a).

    Google Scholar 

  • — Fatty acid oxidation in soluble systems of animal tissues. Biol. Rev. 29, 330 (1954) (b).

    Article  CAS  Google Scholar 

  • Green, D. E.: Organization in relation to enzymatic functions. Symposium of the society for experimental biology on mitochondria and other protoplasmic inclusions. In press (1955).

    Google Scholar 

  • —, J. G. Dewan and L. F. Leloir: The β-hydroxybutyric dehydrogenase of animal tissues. Biochemic. J. 31, 934 (1937).

    CAS  Google Scholar 

  • —, S. Mii and P. M. Kohout: Studies on the terminal electron transport system. I. Succinic dehydrogenase. J. of Biol. Chem 217, 551 (1955).

    CAS  Google Scholar 

  • —, H. R. Mahler and R. M. Bock: Studies on the fatty acid oxidising system of animal tissues. III. Butyryl coenzyme A dehydrogenase. J. of Biol. Chem. 206, 1 (1954).

    CAS  Google Scholar 

  • Greenberg, D. M.: Carbon catabolism of amino acids. In: Chemical pathways of metabolism, vol. II, p. 47. 1954.

    Google Scholar 

  • Gunsalus, I. C.: Products of aerobic glycerol fermentation by streptococcus faecalis. J. Bacter. 54, 239 (1947).

    CAS  Google Scholar 

  • — Group transfer and acyl-generating functions of lipoic acid derivatives. In: The mechanism of enzyme action, p. 545, edit. by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1954(a).

    Google Scholar 

  • — Oxidative and transfer reactions of lipoic acid. Federat. Proc. 13, 715 (1954)(b).

    CAS  Google Scholar 

  • —, B. L. Horecker and W. A. Wood: Pathways of carbohydrate metabolism in microorganisms. Bacter. Rev. 19, 79 (1955).

    CAS  Google Scholar 

  • Hager, L. P., and I. C. Gunsalus: Lipoic acid dehydrogenase: The function of E. coli fraction B. J. Amer. Chem. Soc. 75, 5767 (1953).

    Article  CAS  Google Scholar 

  • Haldane, J. B. S.: The origin of life. Rationalist Annual. 1929. Reprinted in: The inequality of man. London 1932. Published as Science and human life. New York 1933.

    Google Scholar 

  • — The origins of life. New Biology, vol. 16, p. 12. London: Penguin Books 1954.

    Google Scholar 

  • Haldane, J. S., and J. G. Priestley: The regulation of the lung ventilation. J. of Physiol. 32, 225 (1905).

    CAS  Google Scholar 

  • Hansen, R. S., F. A. Miller and S. D. Christian: Activity coefficients of components to the systems water-acetic acid, water-propionic acid and water-n-butyric acid at 25°. J. of Physic. Chem. 59, 391 (1955).

    Article  CAS  Google Scholar 

  • Harary, I., S. R. Korey and S. Ochoa: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. VII. Equilibrium of “malic” enzyme reaction. J. of Biol. Chem. 203, 595 (1953).

    CAS  Google Scholar 

  • Harden, A.: The chemical action of “B. coli communis” and similar organisms on carbohydrates and allied compounds. Ann. Rep. Progr. Chem. 47, 335 (1951).

    Google Scholar 

  • Hersey, D. F., and S. J. Ajl: Adenosine triphosphate formation in the oxidation of succinic acid by bacteria. J. Gen. Physiol. 34, 295 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Hills, G. M.: Ammonia production by pathogenic bacteria. Biochemic. J. 34, 1057 (1940).

    CAS  Google Scholar 

  • Holzer, H.: Über Fermentketten und ihre Bedeutung für die Regulation des Kohlenhydratstoffwechsels in lebenden Zellen. 4. Kolloquium der Ges. für physiologische Chemie, S. 89. 1953.

    Google Scholar 

  • — Kinetik und Thermodynamik enzymatischer Reaktionen in lebenden Zellen und Geweben. In: Ergebnisse der Medizinischen Grundlagenforschung, S. 191. Stuttgart: Georg Thieme 1956.

    Google Scholar 

  • Horecker, B. L., M. Gibbs, H. Klenow and P. Z. Smyrniotis: The mechanism of pentose phosphate conversion to hexose monophosphate. I. With a liver enzyme preparation. J. of Biol. Chem. 207, 393 (1954).

    CAS  Google Scholar 

  • —, J. Hurwitz and P. Z. Smyrniotis: Xylulose 5-phosphate and the formation of sedoheptulose 7-phosphate with liver transketolase. J. Amer. Chem. Soc. 78, 692 (1956).

    Article  CAS  Google Scholar 

  • —, and A. Weissbach: The enzymatic synthesis and properties of ribulose 1,5 diphosphate. J. of Biol. Chem. 218, 785 (1956).

    CAS  Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: Transaldolase: The formation of fructose 6-phosphate from sedoheptulose 7-phosphate. J. Amer. Chem. Soc. 75, 2021 (1953).

    Article  CAS  Google Scholar 

  • —: Purification and properties of yeast transaldolase. J. of Biol. Chem. 212, 811 (1952).

    Google Scholar 

  • —, H. Hiatt and P. Marks: Tetrose phosphate and the formation of sedoheptulose diphosphate. J. of Biol. Chem. 212, 827 (1955).

    CAS  Google Scholar 

  • —, and J. E. Seegmiller: The enzymatic conversion of 6-phosphogluconate to ribulose 5-phosphate and ribose 5-phosphate. J. of Biol. Chem. 193, 383 (1951).

    CAS  Google Scholar 

  • Horowitz, N. W.: On the evolution of biochemical syntheses. Proc. Nat. Acad. Sci. U.S.A. 31, 153 (1945).

    Article  CAS  Google Scholar 

  • Hudson, C. S., and F. C. Brown: The heats of solution of the three forms of milk-sugar. J. Amer. Chem. Soc. 30, 960 (1908).

    Article  CAS  Google Scholar 

  • Huffman, H. M.: Thermal data XV. The heats of combustion and free energies of some compounds containing the peptide bond. J. of Physic. Chem. 46, 885 (1942).

    Article  CAS  Google Scholar 

  • —, and E. L. Ellis: Thermal data VIII. The heat capacities, entropies and free energies of some amino acids. J. Amer. Chem. Soc. 59, 2150 (1937).

    Article  CAS  Google Scholar 

  • —, and S. W. Fox: Thermal data X. Heats of combustion and free energies of some organic compounds concerned in carbohydrate metabolism. J. Amer. Chem. Soc. 60, 1400 (1938).

    Article  CAS  Google Scholar 

  • Hurwitz, J.: Conversion of ribulose 5-phosphate to ribulose 1∶5 diphosphate. Federat. Proc. 14, 230 (1955).

    Google Scholar 

  • —, A. Weissbach, B. L. Horecker and P. Z. Smyrniotis: Spinach phosphoribulokinase. J. of Biol. Chem. 218, 769 (1956).

    CAS  Google Scholar 

  • Hyndman, L. A., R. H. Burris and P. W. Wilson: Properties of hydrogenase from azotobacter vinelandii. J. Bacter. 65, 522 (1953).

    CAS  Google Scholar 

  • Jack, G. W., and G. Sgegeman: The heat capacities and entropies of two monosaccharides. J. Amer. Chem. Soc. 63, 2121 (1941).

    Article  CAS  Google Scholar 

  • Jakoby, W. B., D. O. Brummond and S. Ochoa: Formation of 3-phosphoglyceric acid by carbon dioxide fixation with spinach leaf enzymes. J. of Biol. Chem. 218, 811 (1956).

    CAS  Google Scholar 

  • Johnson, M. J.: The role of aerobic phosphorylation in the Pasteur effect. Science (Lancaster, Pa.) 94, 200 (1941).

    CAS  Google Scholar 

  • —, In Lardy, H. A., Respiratory Enzymes, 2nd edit. Minneapolis: Burgess Publishing Co. 1949

    Google Scholar 

  • Jones, M. E.: Discussion in symposium on chemistry and functions of coenzyme A. Federat. Proc. 12, 708 (1953).

    CAS  Google Scholar 

  • —, L. Spector and F. Lipmann: Carbamyl phoshhate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. Chem. Soc. 77, 819 (1955) (a).

    Article  CAS  Google Scholar 

  • —: Carbamyl phosphate. Proc. 3rd. Int. Congr. of Biochem., Brussels 1955, edit. by V. Liébecq, p. 278. New York: Academic Press 1956.

    Google Scholar 

  • Kalckar, H. M.: In: A symposium on the mechanism of enzyme action, p. 739, edit. by V. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Kaplan, N. O.: Thermodynamics and mechanism of the phosphate bond. In J. B. Sumner and K. Myrbäck, The enzymes: Chemistry and mechanism of action, vol. 2, part. 1, p. 55. New York: Academic Press 1951.

    Google Scholar 

  • —, S. P. Colowick and E. F. Neufeld: Pyridine nucleotide transhydrogenase. II. Direct evidence for and mechanism of the transhydrogenase reaction. J. of Biol. Chem. 195, 107 (1952).

    CAS  Google Scholar 

  • —: Pyridine nucleotide transhydrogenase III. Animal tissue transhydrogenases. J. of Biol. Chem. 205, 1 (1953).

    CAS  Google Scholar 

  • Kaufman, S.: Studies on the mechanism of the reaction catalysed by the phosphorylating enzyme. J. of Biol. Chem. 216, 153 (1955).

    CAS  Google Scholar 

  • —, and S. G. A. Alivisatos: Purification and properties of the phosphorylating enzyme from spinach. J. of Biol. Chem. 216, 141 (1955).

    CAS  Google Scholar 

  • Kearney, E. B., and T. P. Singer: On the prosthetic group of succinic dehydrogenase. Biochim. et Biophysica Acta 17, 596 (1955). *** DIRECT SUPPORT *** A0535004 00024

    Article  CAS  Google Scholar 

  • Kempner, W., and F. Kubowitz: Wirkung des Lichtes auf die Kohlenoxydhemmung der Buttersäuregärung. Biochem. Z. 265, 245 (1933).

    CAS  Google Scholar 

  • Kluyver, A. J.: The chemical activities of microorganisms. London: University of London Press 1931.

    Google Scholar 

  • Knivett, V. A.: Citrulline as an intermediate in the breakdown of arginine by streptococcus faecalis. Biochemic. J. 50, XXX (1952).

    Google Scholar 

  • Knox, W. E.: The metabolism of phenylalanine and tyrosine. In: Symposium on amino acid metabolism, p. 836, edit. by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • —, and S. W. Edwards: Homogentisate oxidase of liver. J. of Biol. Chem. 216, 479 (1955) (a).

    CAS  Google Scholar 

  • —: The properties of maleyl acetoacetate, the initial product of homogentisate oxidation in liver. J. of Biol. Chem. 216, 459 (1955) (b).

    Google Scholar 

  • Kolthoff, I. M., W. Stricks and T. Tanaka: The polarographic prewaves of cystine (RSSR) and dithiodiglycollic acid (TSST) and the oxidation potentials of the systems RSSR-RSH and TSST-TSH. J. Amer. Chem. Soc. 77, 4739 (1955).

    Article  CAS  Google Scholar 

  • Korányi, A., and A. Szent Györgyi: Über die Bernsteinsäurebehandlung diabetischer Azidose, Dtsch. med. Wschr. 1937, 1029.

    Google Scholar 

  • Kornberg, A., and W. E. Pricer, jr.: Enzymic synthesis of the coenzyme A derivatives of long chain fatty acids. J. of Biol. Chem. 204, 329 (1953) (a).

    CAS  Google Scholar 

  • —: Enzymic esterification of α-glycerophosphate by long chain fatty acids. J. of Biol. Chem. 204, 345 (1953) (b).

    CAS  Google Scholar 

  • Kornberg, H. L., and E. Racker: Enzymic reactions of erythrose 4-phosphate. Biochemic. J. 61, iij (1955).

    Google Scholar 

  • Krebs, H. A.: The role of fumarate in the respiration of Bacterium coli commune. J. of Biochem. 31, 2095 (1937).

    CAS  Google Scholar 

  • — The intermediary stages in the biological oxidation of carbohydrate. Adv. Enzymol. 3, 191 (1943).

    CAS  Google Scholar 

  • — Cyclic processes in living matter. Enzymologia (Den Haag) 12, 88 (1947).

    CAS  Google Scholar 

  • — The tricarboxylic acid cycle. Harvey Lect. 44, 165 (1950).

    Google Scholar 

  • — Oxidation of amino acids. In J. B. Sumner, and K. Myrbäck, The Enzymes: Chemistry and mechanism of action, vol. 2, part 1, p. 499. New York: Academic Press 1951.

    Google Scholar 

  • — The equilibrium constants of the fumarase and aconitase systems. Biochemic. J. 54, 78 (1953) (a).

    CAS  Google Scholar 

  • — Some aspects of the energy transformation in living matter. Brit. Med. Bull. 9, 97 (1953) (b).

    PubMed  CAS  Google Scholar 

  • — The tricarboxylic acid cycle. In D. M. Greenberg, Chemical pathways of metabolism, vol. I, p. 109. New York: Academic Press 1954 (a).

    Google Scholar 

  • — Energy production in animal tissues and in micro-organisms. In: Cellular Metabolism and Infections by E. Racker. New York: Academic Press, Inc. 1954 (b).

    Google Scholar 

  • — Considerations concerning the pathways of syntheses in living matter. Synthesis of glycogen from non-carbohydrate precursors. Bull. Johns Hopkins Hosp. 95, 19 (1954) (c).

    PubMed  CAS  Google Scholar 

  • L. V. Eggleston and V. A. Knivett: Arsenolysis and phosphorolysis of citrulline in mammalian liver. Biochemic. J. 59, 185 (1955).

    CAS  Google Scholar 

  • —, and R. Hems: Some reactions of adenosine and inosine phosphates in animal tissues. Biochim. et Biophysica Acta 12, 172 (1953).

    Article  CAS  Google Scholar 

  • Kubowitz, F.: Über die Hemmung der Buttersäuregärung durch Kohlenoxyd. Biochem. Z. 274, 285 (1934).

    CAS  Google Scholar 

  • Kuhn, R., and P. Boulanger: Beziehungen zwischen Reduktions-Oxydations-Potential und chemischer Konstitution der Flavine. Ber. dtsch. chem. Ges. B 69, 1557 (1936).

    Article  Google Scholar 

  • Kury, J. W., A. J. Zielen and W. L. Latimer: Heats of formation and entropies of HS and S−−. Potential of sulfide-sulfur couple. U. S. Atomic Energy Comm. UCRL-2108, 3 (1953). Zit. in Chem. Abstr. 48, 35 (1954).

    Google Scholar 

  • Lang, K.: Der intermediäre Stoffwechsel. Heidelberg: Springer 1952.

    Google Scholar 

  • Langdon, R. G.: The requirement of triphosphopyridine nucleotide in fatty acid synthesis. J. Amer. Chem. Soc. 77, 5190 (1955).

    Article  CAS  Google Scholar 

  • Lardy, H. A.: The role of phosphate and metabolic control mechanisms. In The Biology of Phosphorus. State College Press, Michigan 1952.

    Google Scholar 

  • —, and H. Wellman: Oxidative phosphorylations: role of inorganic phosphate and acceptor systems in control of metabolic rates. J. of Biol. Chem. 195, 215 (1952).

    CAS  Google Scholar 

  • Latimer, W. M.: Oxidation-potentials, 2nd edit. Prentice-Hall 1952.

    Google Scholar 

  • Lawrence, R. D.: Diabetic ketosis and succinic acid. Lancet 1937 II, 286.

    Google Scholar 

  • Lawrence, R. D., R. A. McCance and N. Archer: Succinic acid treatment of diabetic ketosis. Brit. Med. J. 1937, 214.

    Google Scholar 

  • Lehninger, A. L.: A quantitative study of the products of fatty acid oxidation in liver suspensions. J. of Biol. Chem. 164, 291 (1946).

    CAS  Google Scholar 

  • — Esterification of inorganic phosphate coupled to electron transport between dihydrophosphopyridine nucleotide and oxygen. J. of Biol. Chem. 178, 625 (1949).

    CAS  Google Scholar 

  • — Oxidative phosphorylation in diphosphopyridine nucleotide-linked systems. In: Phosphorus Metabolism, vol. I, p. 344, edit. W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press, 1951.

    Google Scholar 

  • — Oxidative phosphorylation. Harvey Lect. 49, 176 (1955).

    Google Scholar 

  • Lennerstrand, A.: Über die Wirkung von Phosphat auf Oxydation und Phosphorylierung in durch Fluorid vergifteten Apo-Zymasesystem. Biochem. Z. 289, 104 (1936).

    Google Scholar 

  • LePage, G. A.: A comparison of tumour and normal tissues with respect to factors affecting the rate of anaerobic glycolysis. Cancer Res. 10, 77 (1950).

    CAS  Google Scholar 

  • Lerner, A. B.: On the metabolism of phenylalanine and tyrosine. J. of Biol. Chem. 181, 281 (1949).

    CAS  Google Scholar 

  • Lewis, G. N., and M. Randall: Thermodynamics, 1st edit. New York: McGraw-Hill Book Company, Inc. 1923.

    Google Scholar 

  • Lipmann, F.: Über die oxydative Hemmbarkeit der Glykolyse und den Mechanismus der Pasteurschen Reaktion. Biochem. Z. 265, 133 (1933).

    CAS  Google Scholar 

  • — Über die Hemmung der Mazerationssaftgärung durch Sauerstoff in Gegenwart positiver Oxydoreduktionssysteme. Biochem. Z. 268, 205 (1934).

    CAS  Google Scholar 

  • — Fermentation of phosphogluconic acid. Nature (Lond.) 138, 588 (1936).

    Article  CAS  Google Scholar 

  • — Metabolic generation and utilization of phosphate bond energy. Adv. Enzymol. 1, 99 (1941).

    CAS  Google Scholar 

  • — Metabolic process patterns. In: Currents in biochemical research, p. 137, edit. by D. E. Green. New York: Interscience Publishers 1946.

    Google Scholar 

  • Lorber, V., N. Lifson, H. G. Wood, W. Sakami and W. W. Shreeve: Conversion of lactate to liver glycogen in the intact rat, studied with isotopic lactate. J. of Biol. Chem. 183, 517 (1950).

    CAS  Google Scholar 

  • —, W. Sakami and H. G. Wood: Conversion of propionate to liver glycogen in the intact rat, studied with isotopic propionate. J. of Biol. Chem. 183, 531 (1950).

    CAS  Google Scholar 

  • Lynen, F.: Über den aeroben Phosphatbedarf der Hefe. Ein Beitrag zur Kenntnis der Pasteurschen Reaktion. Liebigs Ann. 546, 120 (1941).

    Article  CAS  Google Scholar 

  • — Acetyl coenzyme A and the fatty acid cycle. Harvey Lect. 48, 210 (1954).

    Google Scholar 

  • —and R. Koenigsberger: Zum Mechanismus der Pasteurschen Reaktion. Der Phosphat-Kreislauf in der Hefe und seine Beeinflussung durch 2,4-Dinitrophenol. Liebigs Ann. 573, 60 (1951).

    Article  CAS  Google Scholar 

  • —and O. Wieland: β-Ketoreductase. In: Methods in Enzymology, vol. 1, p. 566. New York: Academic Press 1955.

    Chapter  Google Scholar 

  • Madison, K. M.: The organism and its origin. Evolution 7, 211 (1953).

    Article  Google Scholar 

  • Mahler, H. R.: Role of coenzyme A in fatty acid metabolism. Federat. Proc. 12, 694 (1953).

    CAS  Google Scholar 

  • —, S. J. Wakil and R. M. Bock: Studies on fatty acid oxidation. I. Enzymatic activation of fatty acids. J. of Biol. Chem. 204, 453 (1953).

    CAS  Google Scholar 

  • Martius, C.: Die Stellung des Phyllochinones (Vitamin K1) in der Atmungskette. Biochem. Z. 326, 26 (1954).

    PubMed  CAS  Google Scholar 

  • —, and D. Nitz-Litzow: Zum Wirkungsmechanismus des Vitamin K. Biochem. Z. 327, 1 (1955).

    PubMed  CAS  Google Scholar 

  • McElroy, W. D.: Properties of the reaction utilizing adenosine triphosphate for bioluminescence. J. of Biol. Chem. 191, 547 (1951).

    CAS  Google Scholar 

  • —, and B. L. Strehler: Bioluminescence. Bacter. Rev. 18, 177 (1954).

    CAS  Google Scholar 

  • Mel, H. C.: Chemical thermodynamics of aqueous thiosulfate and bromate ions. U.S. Atomic Energy Comm. UCRL-2330, 2 (1953). Zit. in Chem. Abstr. 48, 6228 (1954).

    Google Scholar 

  • Metzler, D. E., J. B. Longenecker and E. E. Snell: The reversible catalytic cleavage of hydroxyaminoacids by pyridoxal and metal salts. J. Amer. Chem. Soc. 76, 639 (1954).

    Article  CAS  Google Scholar 

  • —, J. Olivard and E. E. Snell: Transamination of pyridoxamine and amino acids with glyoxylic acid. J. Amer. Chem. Soc. 76, 644 (1954).

    Article  CAS  Google Scholar 

  • Meyerhof, O.: II. Das Schicksal der Milchsäure in der Erholungsperiode des Muskels. Pflügers Arch. 182, 284 (1920).

    Article  CAS  Google Scholar 

  • —, and S. Fiala: Pasteur effect in dead yeast. Biochim. et Biophysica Acta 6, 1 (1950).

    Article  CAS  Google Scholar 

  • —, and R. Junowicz-Kocholaty: The equilibria of isomerase and aldolase and the problem of the phosphorylation of glyceraldehyde phosphate. J. of Biol. Chem. 149, 71 (1943).

    CAS  Google Scholar 

  • —, and K. Lohmann: Über die enzymatische Gleichgewichtsreaktion zwischen Hexosediphosphosäure und Dioxyacetonphosphorsäure. Biochem. Z. 271, 89 (1934).

    CAS  Google Scholar 

  • —, and P. Oesper: The mechanism of the oxidative reaction in fermentation. J. of Biol. Chem. 170, 1 (1947).

    CAS  Google Scholar 

  • Michaelis, L., M. P. Schubert and C. V. Smythe: Potentiometric study of the flavins. J. of Biol. Chem. 116, 587 (1936).

    CAS  Google Scholar 

  • Mii, S., and D. E. Green: Studies on the fatty acid oxidizing system of animal tissues. VIII. Reconstruction of fatty acid oxidizing system with triphenyl tetrazolium as electron acceptor. Biochim. et Biophysica Acta 13, 425 (1954).

    Article  CAS  Google Scholar 

  • Miller, S. L.: A production of amino acids under possible primitive earth conditions. Science (Lancaster, Pa.) 117, 528 (1953).

    CAS  Google Scholar 

  • — Production of some organic compounds under possible primitive earth conditions. J. Amer. Chem. Soc. 77, 2351 (1955).

    Article  CAS  Google Scholar 

  • Morales, M. F., J. Botts, J. J. Blum and T. L. Hill: Elementary processes in muscle action: An examination of current concepts. Physiologic. Rev. 35, 475 (1955).

    CAS  Google Scholar 

  • Nachmansohn, D.: Metabolism and function of the nerve cell. Harvey Lect. 49, 57 (1955).

    Google Scholar 

  • —, C. W. Coates, M. A. Rothenberg and M. V. Brown: On the energy source of the action potential in the electric organ of Electrophorus electricus. J. of Biol. Chem. 165, 223 (1946).

    CAS  Google Scholar 

  • R. T. Cox, C. W. Coates and A. L. Machado: Action potential and enzyme activity in the electric organ of Electrophorus electricus. II. Phospho-creatine as energy source of the action potential. J. of Neurophysiol. 6, 383 (1943).

    CAS  Google Scholar 

  • Niel, C. B. van: The comparative biochemistry of photosynthesis. In: Photosynthesis in Plants, p. 437, edit. J. Franck and W. E. Loomis. Ames: Iowa State College Press 1949.

    Google Scholar 

  • Nielsen, S. O., and A. L. Lehninger: Phosphorylation coupled to the oxidation of ferrocytochrome c. J. of Biol. Chem. 215, 555 (1955).

    CAS  Google Scholar 

  • Nisman, B.: The Stickland reaction. Bacter. Rev. 18, 16 (1954).

    CAS  Google Scholar 

  • Ochoa, S., A. H. Mehler and A. Kornberg: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. I. Isolation and properties of an enzyme from pigeon liver catalyzing the reversible oxidative decarboxylation of 1-malic acid. J. of Biol. Chem. 174, 979 (1948).

    CAS  Google Scholar 

  • Oginsky, E. L., and R. F. Gehrig: The arginine dihydrolase system of Streptococcus faecalis. III. The decomposition of citrilline. J. of Biol. Chem. 204, 721 (1953). *** DIRECT SUPPORT *** A0535004 00025

    CAS  Google Scholar 

  • Oka, Y.: Heat of formation of metabolic substances. I. Heat of formation of 1 (+) glutamic acid, 1 (−) tyrosine. Nippon Seirigaku Zasshi 9, 365 (1944) (a). Zit. in Chem. Abst. 41, 4701 (1947).

    CAS  Google Scholar 

  • — Calculation of free energy by calorimetric determination. I. Specific heat, entropy and free energy of 1 (+) glutamic acid at low temperature. Nippon Seirigaku Zasshi 9, 359 (1944) (b). Zit. in Chem. Abst. 41, 4700 (1947).

    CAS  Google Scholar 

  • Oparin, A. I.: Orgin of life. New York: The MacMillan Company 1938, 2nd edit. New York: Dover Publications, Inc. 1953.

    Google Scholar 

  • Parks, G. S., and H. M. Huffman: The free energies of some organic compounds. New York: Reinhold 1932.

    Google Scholar 

  • —, K. K. Kelley and H. M. Huffman: Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds. J. Amer. Chem. Soc. 51, 1969 (1926).

    Article  Google Scholar 

  • —, T. J. West, B. F. Naylor, P. S. Fujii and L. A. McClaine: Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols. J. Amer. Chem. Soc. 68, 2524 (1946).

    Article  CAS  Google Scholar 

  • Paul, K. G.: Oxidation-reduction potential of cytochrome c. Arch. of Biochem. 12, 441 (1947).

    CAS  Google Scholar 

  • Pinchot, G. B.: Phosphorylation coupled to electron transport in cell-free extracts of Alcaligenes faecalis. J. of Biol. Chem. 205, 65 (1953).

    CAS  Google Scholar 

  • Pirie, N. W.: On making and recognizing life. New Biology, vol. 16, p. 41. London: Penguin Books 1954.

    Google Scholar 

  • Pogell, P. M., and R. W. McGilvery: Partial purification of fructose 1∶6-diphosphatase. J. of Biol. Chem. 208, 149 (1954).

    CAS  Google Scholar 

  • Porter, J. R.: Bacterial chemistry and physiology. London: Chapman & Hall 1946.

    Google Scholar 

  • Quayle, J. R., R. C. Fuller, A. A. Benson and M. Calvin: Enzymatic carboxylation of ribulose diphosphate. J. Amer. Chem. Soc. 76, 3610 (1954).

    Article  CAS  Google Scholar 

  • Rabinovitz, M., M. P. Stulberg and P. D. Boyer: The control of pyruvate oxidation in a cell-free rat heart preparation by phosphate acceptors. Science (Lancaster, Pa.) 114, 641 (1951).

    CAS  Google Scholar 

  • Racker, E.: Crystalline alcohol dehydrogenase from bakers’ yeast. J. of Biol. Chem. 184, 313 (1950).

    CAS  Google Scholar 

  • — Alternate pathways of glucose and fructose metabolism. Adv. Enzymol. 15, 141 (1954) (a).

    CAS  Google Scholar 

  • — Formation of acyl and carbonyl complexes associated with electron transport and group-transfer reactions. In: A Symposium on the Mechanism of Enzyme Action. Edit. W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press, 1954 (b).

    Google Scholar 

  • Racker, E.: Personal communication 1954 (c).

    Google Scholar 

  • — Synthesis of carbohydrates from carbon dioxide and hydrogen in a cell-free system. Nature (Lond.) 175, 249 (1955).

    Article  CAS  Google Scholar 

  • —, G. L. de la Haba and I. G. Leder: Thiamine pyrophosphate, a coenzyme of transketolase. J. Amer. Chem. Soc. 75, 1010 (1953).

    Article  CAS  Google Scholar 

  • —, and I. Krimsky: Glutathione, a prosthetic group of glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 198, 721, 731 (1952).

    Google Scholar 

  • Recknagel, R. O., and V. R. Potter: Mechanism of the ketogenic effect of ammonium chloride. J. of Biol. Chem. 191, 263 (1951).

    CAS  Google Scholar 

  • Reed, L. J.: Metabolic functions of thiamine and lipoic acid. Physiologic. Rev. 33, 544 (1953).

    CAS  Google Scholar 

  • —, B. G. de Busk, I. C. Gunsalus and C. S. Hornberger: Crystalline α-lipoic acid: A catalytic agent associated with pyruvate dehydrogenase. Science (Lancaster, Pa.) 114, 93 (1951).

    CAS  Google Scholar 

  • Rosenblueth, A., N. Wiener and J. Bigelow: Behaviour, purpose and teleology. Philosophy of Science 10, 18 (1943).

    Article  Google Scholar 

  • Rosenfeld, B., and E. Simon: The mechanism of the butanol-acetone fermentation. I. The role of pyruvate as an intermediate. J. of Biol. Chem. 186, 395 (1950) (a).

    CAS  Google Scholar 

  • Rosenfeld, B., and E. Simon: The mechanism of the butanol-acetone fermentation. II. Phosphoenolpyruvate as a new intermediate. J. of Biol. Chem. 186, 405 (1950) (b).

    CAS  Google Scholar 

  • Rossini, F. D.: Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states and the energies of their alcoholic linkages. J. Res. Nat. Bur. Stand. 13, 189 (1934).

    CAS  Google Scholar 

  • Rossini, F. D., D. D. Wagman, W. H. Evans, S. Levine and I. Jaffe: Selected value of chemical thermodynamic properties. Nat. Bur. Stand., Circular 1952, No 500.

    Google Scholar 

  • Sanadi, D. R., D. M. Gibson and P. Ayengar: Guanosine triphosphate, the primary product of phosphorylation coupled to the breakdown of succinyl coenzyme A. Biochim. et Biophysica Acta 14, 434 (1954).

    Article  CAS  Google Scholar 

  • — and L. Ouellet: Evidence for a new intermediate in the phosphorylation coupled to α-ketoglutarate oxidation. Biochim. et Biophysica Acta 13, 146 (1954).

    Article  CAS  Google Scholar 

  • —, J. W. Littlefield and R. M. Bock: Studies on α-ketoglutaric oxidase. II. Purification and properties. J. of Biol. Chem. 197, 851 (1952).

    CAS  Google Scholar 

  • Santer, M., and W. Vishniac: CO2 incorporation by extracts of Thiobacillus thioparus. Biochim. et Biophysica Acta 18, 157 (1955).

    Article  CAS  Google Scholar 

  • Scheffer, M. A.: De suikervargisting door bacterien der coli-groep. Thesis Delft 1928.

    Google Scholar 

  • Schepartz, B.: Inhibition and activation of the oxidation of homogentisic acid. J. of Biol. Chem. 205, 185 (1953).

    CAS  Google Scholar 

  • —, and S. Gurin: The intermediary metabolism of phenylalanine labelled with radioactive carbon. J. of Biol. Chem. 180, 663 (1949).

    CAS  Google Scholar 

  • Schmidt, G. C., M. A. Logan and A. A. Tytell: The degradation of arginine by Clostridium perfringens (BP6K). J. of Biol. Chem. 198, 771 (1952).

    CAS  Google Scholar 

  • Scott, D. B. M., and S. S. Cohen: Enzymatic formation of pentose phosphate from 6-phosphogluconate. J. of Biol. Chem. 188, 509 (1951).

    CAS  Google Scholar 

  • —: The oxidative pathway of carbohydrate metabolism in Escherichia coli. I. The isolation and properties of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Biochemic. J. 55, 23 (1953).

    CAS  Google Scholar 

  • Seubert, W., and F. Lynen: Enzymes of fatty acid cycle. II. Ethylene reductase. J. Amer. Chem. Soc. 75, 2787 (1953).

    Article  CAS  Google Scholar 

  • Shaw, D. R. D.: Polyol dehydrogenases: galactitol and d-iditol dehydrogenases. Ph. D. Thesis University of New Zealand 1956.

    Google Scholar 

  • Simon, E.: The formation of lactic acid by Clostridium acetobutylicum (Weizmann). Arch. of Biochem. 13, 237 (1947).

    CAS  Google Scholar 

  • Skinner, H. A.: Thermochemistry. Ann. Rep. Chem. Soc. 51, 33 (1954).

    Google Scholar 

  • Slade, H. D., and W. C. Slamp: The formation of arginine dihydrolase by Streptococci and some properties of the enzyme system. J. Bacter. 64, 455 (1952).

    CAS  Google Scholar 

  • —, and C. W. Werkman: The anaerobic dissimilation of citric acid by cell suspensions of Streptococcus paracitrovorus. J. Bacter. 41, 675 (1941).

    CAS  Google Scholar 

  • Slater, E. C.: A comparative study of the succinic dehydrogenase cytochrome system in heart muscle and in kidney; the action of inhibitors on the systems of enzymes which catalyse the aerobic oxidation of succinate; a respiratory catalyst required for the reduction of cytochrome c by cytochrome b. Biochemic. J. 45, 1, 8, 14 (1949).

    CAS  Google Scholar 

  • — Respiratory chain phosphorylation. Proc. 3rd. Int. Congr. of Biochem., Brussels 1955, p. 264, Edit. by C. Liebecq. New York: Academic Press 1956.

    Google Scholar 

  • Slein, M. W.: Phosphomannose isomerase. J. of Biol. Chem. 186, 753 (1950).

    CAS  Google Scholar 

  • Sprinson, D. B.: The biosynthesis of shikimic acid from labelled carbohydrates. In: A Symposium on Amino Acid Metabolism, p. 817, edit. by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Srere, P. A., J. R. Cooper, V. Klybas and E. Racker: Xylulose 5-phosphate, a new intermediate in the pentose phosphate cycle. Arch. of Biochem. a. Biophysics 59, 535 (1955).

    Article  CAS  Google Scholar 

  • —, H. L. Kornberg and E. Racker: Conversion of pentose phosphate to hexose phosphate catalyzed by purified enzymes. Federat. Proc. 14, 285 (1955).

    Google Scholar 

  • Srinivasan, P. R., M. Katagiri and D. B. Sprinson: The enzymatic synthesis of shikimic acid from d-erythrose-4-phosphate and phosphoenolpyruvate. J. Amer. Chem. Soc. 77, 4943 (1955).

    Article  CAS  Google Scholar 

  • Stadtman, E. R.: The net enzymic synthesis of acetyl coenzyme A. J. of Biol. Chem. 196, 535 (1952).

    CAS  Google Scholar 

  • —, and H. A. Barker: Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. J. of Biol. Chem. 184, 769 (1950).

    CAS  Google Scholar 

  • —, M. Doudoroff and F. Lipmann: The mechanism of acetoacetate synthesis. J. of Biol. Chem. 191, 377 (1951).

    CAS  Google Scholar 

  • —, G. D. Novelli and F. Lipmann: Coenzyme A function in, and acetyl transfer by, the phosphotransacetylase system. J. of Biol. Chem. 191, 365 (1951).

    CAS  Google Scholar 

  • Stanier, R. Y.: Some singular features of bacteria as dynamic systems. p. 3. In: Cellular Metabolism and Infections. Edit. E. Racker. New York: Academic Press 1954.

    Google Scholar 

  • Stadie, W. C.: Current concepts of the actions of insulin. Physiologic Rev. 34, 52 (1954).

    CAS  Google Scholar 

  • Stephenson, M.: Bacterial Metabolism. London: Longmans, Green & Co. 1949.

    Google Scholar 

  • Stern, J. R., and A. del Campillo: Enzymic reaction of crotonyl coenzyme A. J. Amer. Chem. Soc. 75, 2277 (1953).

    Article  CAS  Google Scholar 

  • —, and S. Ochoa: Enzymatic synthesis of citric acid. V. Synthesis with soluble enzymes. J. of Biol. Chem. 191, 161 (1951).

    CAS  Google Scholar 

  • —, and F. Lynen: Enzymatic synthesis of citric acid. V. Reaction of acetyl coenzyme A. J. of Biol. Chem. 198, 313 (1952).

    CAS  Google Scholar 

  • Stetten, M. R.: Metabolic relationship between glutamic acid, proline, hydroxyproline and ornithine. In: Symposium on Amino Acid Metabolism, p. 277, edit. by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Stiehler, R. D., and H. M. Huffman: Thermal data. V. The heat capacities, entropies and free energies of adenine, hypoxanthine, guanine, xanthine, uric acid, allantoin and alloxan. J. Amer. Chem. Soc. 57, 1741 (1935).

    Article  CAS  Google Scholar 

  • Stokes, J. L.: Fermentation of glucose by suspensions of Escherichia coli J. Bact. 57, 147 (1949).

    CAS  Google Scholar 

  • Strecker, H. J., and I. Harary: Bacterial butylene glycol dehydrogenase and diacetyl reductase. J. of Biol. Chem. 211, 263 (1954).

    CAS  Google Scholar 

  • —, and S. Korkes: Glucose dehydrogenase. J. of Biol. Chem. 196, 769 (1952)

    CAS  Google Scholar 

  • —, and P. Mela: The interconversion of glutamic acid and proline. Biochem. et Biophysica Acta 17, 580 (1955).

    Article  CAS  Google Scholar 

  • Strittmatter, C. F., and E. G. Ball: A hemochromogen component of liver microsomes. Proc. Nat. Acad. Sci. U.S.A. 38, 19 (1952).

    Article  CAS  Google Scholar 

  • Suda, M., and Y. Takeda: Metabolism of tyrosine. II. Homogentisicase. J. of Biochem. (Tokyo) 37, 381 (1950).

    CAS  Google Scholar 

  • Swanson, M. A.: Phosphatases of liver. 1. Glucose 6-phosphatase. J. of Biol. Chem. 184, 647 (1950).

    CAS  Google Scholar 

  • Talalay, P., and M. M. Dobson: Purification and properties of β-hydroxy and steroid dehydrogenase. J. of Biol. Chem. 205, 823 (1953).

    CAS  Google Scholar 

  • —and P. I. Marcus: Enzymic formation of 3-α-hydroxy steroids. Nature (Lond.) 173, 1189 (1954).

    Article  CAS  Google Scholar 

  • Talley, E. A., and A. S. Hunter: Solubility of lactose and its hydrolytic properties. J. Amer. Chem. Soc. 74, 2789 (1952).

    Article  CAS  Google Scholar 

  • Tatum, E. L., S. R. Gross, G. Ehrensvärd and L. Garnjobst: Synthesis of aromatic compounds by Neurospora. Proc. Nat. Acad. Sci. U.S.A. 40, 271 (1954).

    Article  CAS  Google Scholar 

  • Taylor, J. B., and J. S. Rowlinson: The thermodynamic properties of aqueous solutions of glucose. Trans. Faraday Soc. 51, 1183 (1955).

    Article  CAS  Google Scholar 

  • Terrell, A. W.: Succinic acid and glucose in pituitary ketonuria. Proc. Soc. Exper. Biol. a. Med. 39, 300 (1938).

    CAS  Google Scholar 

  • Tietz, A., and B. Shapiro: The synthesis of glycerides in liver homogenates. Biochim. et Biophysica Acta 19, 374 (1956). *** DIRECT SUPPORT *** A0535004 00026

    Article  CAS  Google Scholar 

  • Tissieres, A., and E. C. Slater: Respiratory chain phosphorylation in extracts of Azotobacter vinelandii. Nature (Lond.) 176, 736 (1955).

    Article  CAS  Google Scholar 

  • Topper, Y. J., and A. B. Hastings: A study of the chemical origins of glycogen by use of C14 labelled carbon dioxide, acetate and pyruvate. J. of Biol. Chem. 179, 1255 (1949).

    CAS  Google Scholar 

  • Trudinger, P. A.: Phosphoglycerate formation from pentose phosphate by extracts of Thiobacillus denitrificans. Biochim. et Biophysica Acta 18, 581 (1955).

    Article  CAS  Google Scholar 

  • Udenfriend, S., and C. Mitoma: Conversion of phenylalanine to tyrosine. In: A Symposium on Amino Acid Metabolism, p. 876, edit. by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Urey, H. C.: The planets. New Haven: Yale University Press 1952.

    Google Scholar 

  • Utter, M. F., and K. Kurahashi: Mechanisms of action of oxaloacetic decarboxylase from liver. J. of Biol. Chem. 188, 847 (1953).

    Google Scholar 

  • —, and H. G. Wood: Mechanisms of fixation of carbon dioxide by heterotrophs and autotrophs. Adv. Enzymol. 12, 41 (1951).

    CAS  Google Scholar 

  • Velick, S. F.: The alcohol and glyceraldehyde 3-phosphate dehydrogenases of yeast and mammals. In: A Symposium on the Mechanism of Enzyme Action, edit. by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Vestling, C. S.: Standard potential of the old yellow enzyme of yeast. Federat. Proc. 14, 297 (1955).

    Google Scholar 

  • Vogel, H. J.: On the glutamate-proline-ornithine interrelation in various micro-organisms In: A Symposium on Amino Acid Metabolism, p. 335, edit. by W. D. McElroy and B. Glass. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Wainio, W. W.: Reduction of cytochrome oxidase with ferrocytochrome c. J. of Biol. Chem. 216, 593 (1955).

    CAS  Google Scholar 

  • Warburg, O., and W. Christian: Verbrennung von Robison-Ester durch Triphospho-Pyridin-Nucleotid. Biochem. Z. 287, 440 (1936).

    CAS  Google Scholar 

  • —: Abbau von Robisonester durch Triphospho-Pyridin-Nucleotid. Biochem. Z. 292, 287 (1937).

    CAS  Google Scholar 

  • —: Isolierung und Kristallisation des Proteins des oxydierenden Gärungsferments. Biochem. Z. 303, 40 (1939).

    CAS  Google Scholar 

  • —, and A. Griese: Wasserstoffübertragendes Co-Ferment, seine Zusammensetzung und Wirkungsweise. Biochem. Z. 282, 157 (1935).

    CAS  Google Scholar 

  • Weber, H. H.: Adenosine triphosphate and mobility of systems. Harvey Lect. 49, 37 (1954).

    CAS  Google Scholar 

  • — Das kontraktile System von Muskel und Zellen. Proc. 3rd. Int. Congr. of Biochem., Brussels 1955, p. 356, edit. by C. Liebecq. New York: Academic Press 1956.

    Google Scholar 

  • —, and H. Portzehl: The transference of the muscle energy in the contraction cycle. In: Progress in Biophysics, vol. 4, p. 60, edit. by J. A. V. Butler and J. T. Randall. New York: Academic Press 1954.

    Google Scholar 

  • Weil-Malherbe, A., and A. D. Bone: The hexokinase activity of rat-brain extracts. Biochimic. J. 49, 339 (1951).

    CAS  Google Scholar 

  • Weinhouse, S., and R. H. Millington: Ketone body formation from tyrosine. J. of Biol. Chem. 175, 995 (1948).

    CAS  Google Scholar 

  • —: Ketone body formation from tyrosine. J. of Biol. Chem. 181, 645 (1949).

    CAS  Google Scholar 

  • Weissbach, A., and B. L. Horecker: Enzymatic formation of phosphoglyceric acid from ribulose diphosphate and CO2. Federat. Proc. 14, 302 (1955).

    Google Scholar 

  • —, B. L. Horecker and J. Hurwitz: The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J. of Biol. Chem. 218, 795 (1956).

    CAS  Google Scholar 

  • —, P. Z. Smyrniotis and B. L. Horecker: Pentose phosphate and CO2 fixation with spinach extracts. J. Amer. Chem. Soc. 76, 3611, (1954) (a).

    Article  CAS  Google Scholar 

  • —: The enzymatic formation of ribulose diphosphate. J. Amer. Chem. Soc. 76, 5572 (1954) (b).

    Article  CAS  Google Scholar 

  • Wolfe, R. S., and D. J. O’Kane: Cofactors of the carbon dioxide exchange reaction of Clostridium butyricum. J. of Biol. Chem. 215, 637 (1955).

    CAS  Google Scholar 

  • Wolfrom, M. L., and W. L. Lewis: The reactivity of the methylated sugars. II. The action of dilute alkali on tetramethyl glucose. J. Amer. Chem. Soc. 50, 837 (1928).

    Article  CAS  Google Scholar 

  • Wood, H. G.: The fixation of carbon dioxide and the interrelationships of the tricarboxylic acid cycle. Physiologic. Rev. 26, 198 (1946).

    CAS  Google Scholar 

  • —, Significance of alternate pathways in the metabolism of glucose. Physiologic. Rev. 35, 841 (1955).

    CAS  Google Scholar 

  • —, R. W. Brown and C. H. Werkman: Mechanism. of the butyl alcohol fermentation with heavy carbon acetic and butyric acids and acetone. Arch. of Biochem. 6, 243 (1945).

    CAS  Google Scholar 

  • —, R. W. Stone and C. R. Werkman: The intermediate metabolism of the propionic acid bacteria. Biochemic. J. 31, 349 (1937).

    CAS  Google Scholar 

  • —, and C. H. Werkman: Pyruvic acid dissimilation of glucose by the propionic acid bacteria. Biochemic. J. 28, 745 (1934).

    CAS  Google Scholar 

  • Woods, D. D.: Hydrogenase. IV. The synthesis of formic acid by bacteria. Biochemic. J. 30, 515 (1936).

    CAS  Google Scholar 

  • Wurmser, R., et S. Filitti-Wurmser: Sur l’équilibre entre l’alcool isopropylique et l’acétone en solution en présence d’alcooldeshydrase. Potential d’oxydo-réduction du système — CHOH ⇄ CO. J. Chim. physique 33, 577 (1936).

    CAS  Google Scholar 

  • Yaniv, H., and C. Gilvarg: Quoted by B.D. Davis 1955.

    Google Scholar 

  • Zelitch, I.: The isolation and action of crystalline glyoxylic acid reductase from tobacco leaves. J. of Biol. Chem. 216, 553 (1955).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1957 Springer-Verlag

About this paper

Cite this paper

Krebs, H.A., Kornberg, H.L., Burton, K. (1957). A survey of the energy transformations in living matter. In: Ergebnisse der physiologie biologischen chemie und experimentellen pharmakologie. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0113836

Download citation

  • DOI: https://doi.org/10.1007/BFb0113836

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02135-3

  • Online ISBN: 978-3-540-36664-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics