Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity

  • Chapter
  • First Online:
Nonlinear Analysis and Optimization

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 30))

Abstract

This paper continues the local analysis of nonlinear programming problems begun in Parts I and II. In this part we exploit the tools developed in the earlier parts to obtain detailed information about local optimizers in the nondegenerate case. We show, for example, that these optimizers obey a weak type of differentiability and we compute their derivatives in this weak sense.

Sponsored by the National Science Foundation under Grant MCS 8200632, Mod. 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-P. Aubin, “Lipschitz behavior of solutions to convex minimization problems”, Mathematics of Operations Research 9 (1984) 87–111.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Cornet and G. Laroque, “Lipschitz properties of solutions in mathematical programming”, Discussion Paper 8321, Center for Operations Research and Econometrics (Louvain-la-Neuve, Belgium, 1983).

    Google Scholar 

  3. K. Jittorntrum, “Solution point differentiability without strict complementarity in mathematical programming”, Mathematical Programming Study 21 (1984) 127–138.

    MATH  MathSciNet  Google Scholar 

  4. M. Kojima, “Strongly stable stationary solutions in nonlinear programs”, in: S.M. Robinson, ed., Analysis and computation of fixed points (Academic Press, New York, 1980) pp. 93–138.

    Google Scholar 

  5. G.P. McCormick, Nonlinear programming (Wiley-Interscience, New York, 1983).

    MATH  Google Scholar 

  6. S.M. Robinson, “Strongly regular generalized equations”, Mathematics of Operations Research 5 (1980) 43–62.

    Article  MATH  MathSciNet  Google Scholar 

  7. S.M. Robinson, “Some continuity properties of polyhedral multifunctions”, Mathematical Programming Study 14 (1981) 206–214.

    MATH  Google Scholar 

  8. S.M. Robinson, “Generalized equations,” in: A. Bachem, M. Grötschel and B. Korte, eds., Mathematical programming: The state of the art, Bonn 1982 (Springer-Verlag, Berlin, 1983) pp. 346–367.

    Google Scholar 

  9. S.M. Robinson, “Local structure of feasible sets in nonlinear programming, Part I: Regularity”, in: V. Pereyra and A. Reinoza, eds., Numerical methods (Springer-Verlag, Berlin, 1983) pp. 240–251.

    Chapter  Google Scholar 

  10. S.M. Robinson, “Local structure of feasible sets in nonlinear programming, Part II: Nondegeneracy,” Mathematical Programming Study 22 (1984) 217–230.

    MATH  Google Scholar 

  11. R.T. Rockafellar, Convex analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. Cornet V. H. Nguyen J. P. Vial

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Robinson, S.M. (1987). Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity. In: Cornet, B., Nguyen, V.H., Vial, J.P. (eds) Nonlinear Analysis and Optimization. Mathematical Programming Studies, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121154

Download citation

  • DOI: https://doi.org/10.1007/BFb0121154

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00930-3

  • Online ISBN: 978-3-642-00931-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics