Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the low-momentum behaviour of Yang-Mills propagators obtained from Landau-gauge Dyson-Schwinger equations (DSE) in the PT-BFM scheme. We compare the ghost propagator numerical results with the analytical ones obtained by analyzing the low-momentum behaviour of the ghost propagator DSE in Landau gauge, assuming for the truncation a constant ghost-gluon vertex and a simple model for a massive gluon propagator. The asymptotic expression obtained for the regular or decoupling ghost dressing function up to the order \( \mathcal{O}\left( {{q^2}} \right) \) is proven to fit pretty well the numerical PT-BFM results. Furthermore, when the size of the coupling renormalized at some scale approaches some critical value, the numerical PT-BFM propagators tend to behave as the scaling ones. We also show that the scaling solution, implying a diverging ghost dressing function, cannot be a DSE solution in the PT-BFM scheme but an unattainable limiting case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Boucaud et al., IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation, JHEP 06 (2008) 012 [arXiv:0801.2721] [SPIRES].

    Article  ADS  Google Scholar 

  2. P. Boucaud et al., On the IR behaviour of the Landau-gauge ghost propagator, JHEP 06 (2008) 099 [arXiv:0803.2161] [SPIRES].

    Article  ADS  Google Scholar 

  3. A.C. Aguilar and J. Papavassiliou, Gluon mass generation in the PT-BFM scheme, JHEP 12 (2006) 012 [hep-ph/0610040] [SPIRES].

    Article  ADS  Google Scholar 

  4. A.C. Aguilar and J. Papavassiliou, On dynamical gluon mass generation, Eur. Phys. J. A 31 (2007) 742 [arXiv:0704.2308] [SPIRES].

    ADS  Google Scholar 

  5. A.C. Aguilar and A.A. Natale, A dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations, JHEP 08 (2004) 057 [hep-ph/0408254] [SPIRES].

    Article  ADS  Google Scholar 

  6. A.C. Aguilar, D. Binosi and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: deriving lattice results from Schwinger-Dyson equations, Phys. Rev. D 78 (2008) 025010 [arXiv:0802.1870] [SPIRES].

    ADS  Google Scholar 

  7. R. Alkofer and L. von Smekal, The infrared behavior of QCD Green’s functions: confinement, dynamical symmetry breaking and hadrons as relativistic bound states, Phys. Rept. 353 (2001) 281 [hep-ph/0007355] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  8. C. Lerche and L. von Smekal, On the infrared exponent for gluon and ghost propagation in Landau gauge QCD, Phys. Rev. D 65 (2002) 125006 [hep-ph/0202194] [SPIRES].

    ADS  Google Scholar 

  9. D. Zwanziger, Non-perturbative Landau gauge and infrared critical exponents in QCD, Phys. Rev. D 65 (2002) 094039 [hep-th/0109224] [SPIRES].

    ADS  Google Scholar 

  10. C.S. Fischer and R. Alkofer, Infrared exponents and running coupling of SU(N) Yang-Mills theories, Phys. Lett. B 536 (2002) 177 [hep-ph/0202202] [SPIRES].

    ADS  Google Scholar 

  11. J.M. Pawlowski, D.F. Litim, S. Nedelko and L. von Smekal, Infrared behaviour and fixed points in Landau gauge QCD, Phys. Rev. Lett. 93 (2004) 152002 [hep-th/0312324] [SPIRES].

    Article  ADS  Google Scholar 

  12. M.Q. Huber, R. Alkofer, C.S. Fischer and K. Schwenzer, The infrared behavior of Landau gauge Yang-Mills theory in D = 2, 3 and 4 dimensions, Phys. Lett. B 659 (2008) 434 [arXiv:0705.3809] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. C.S. Fischer, A. Maas and J.M. Pawlowski, On the infrared behavior of Landau gauge Yang-Mills theory, Annals Phys. 324 (2009) 2408 [arXiv:0810.1987] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. P. Boucaud et al., Ghost-gluon running coupling, power corrections and the determination of \( {\Lambda_{\mathop {\text{MS}}\limits^\_}} \), Phys. Rev. D 79 (2009) 014508 [arXiv:0811.2059] [SPIRES].

    ADS  Google Scholar 

  15. A. Sternbeck et al., Running α s from Landau-gauge gluon and ghost correlations, PoS(LATTICE 2007)256 [arXiv:0710.2965] [SPIRES].

  16. P. Watson and H. Reinhardt, The Coulomb gauge ghost Dyson-Schwinger equation, Phys. Rev. D 82 (2010) 125010 [arXiv:1007.2583] [SPIRES].

    ADS  Google Scholar 

  17. P. Watson and H. Reinhardt, The ghost propagator in Coulomb gauge, arXiv:1011.2148 [SPIRES].

  18. D. Epple, H. Reinhardt, W. Schleifenbaum and A.P. Szczepaniak, Subcritical solution of the Yang-Mills Schroedinger equation in the Coulomb gauge, Phys. Rev. D 77 (2008) 085007 [arXiv:0712.3694] [SPIRES].

    ADS  Google Scholar 

  19. A.P. Szczepaniak and E.S. Swanson, Coulomb gauge QCD, confinement and the constituent representation, Phys. Rev. D 65 (2002) 025012 [hep-ph/0107078] [SPIRES].

    ADS  Google Scholar 

  20. J.M. Cornwall, Positivity issues for the pinch-technique gluon propagator and their resolution, Phys. Rev. D 80 (2009) 096001 [arXiv:0904.3758] [SPIRES].

    ADS  Google Scholar 

  21. P. Boucaud et al., The low-momentum ghost dressing function and the gluon mass, Phys. Rev. D 82 (2010) 054007 [arXiv:1004.4135] [SPIRES].

    ADS  Google Scholar 

  22. A.C. Aguilar, D. Binosi, J. Papavassiliou and J. Rodriguez-Quintero, Non-perturbative comparison of QCD effective charges, Phys. Rev. D 80 (2009) 085018 [arXiv:0906.2633] [SPIRES].

    ADS  Google Scholar 

  23. A.C. Aguilar, private communication.

  24. D. Binosi and J. Papavassiliou, The pinch technique to all orders, Phys. Rev. D 66 (2002) 111901 [hep-ph/0208189] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. D. Binosi and J. Papavassiliou, Gauge-invariant truncation scheme for the Schwinger-Dyson equations of QCD, Phys. Rev. D 77 (2008) 061702 [arXiv:0712.2707] [SPIRES].

    ADS  Google Scholar 

  26. D. Binosi and J. Papavassiliou, Gauge-invariant truncation scheme for the Schwinger-Dyson equations of QCD, Phys. Rev. D 77 (2008) 061702 [arXiv:0712.2707] [SPIRES].

    ADS  Google Scholar 

  27. C.S. Fischer and J.M. Pawlowski, Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory, Phys. Rev. D 75 (2007) 025012 [hep-th/0609009] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. C.S. Fischer and J.M. Pawlowski, Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II, Phys. Rev. D 80 (2009) 025023 [arXiv:0903.2193] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. A. Sternbeck, E.M. Ilgenfritz, M. Muller-Preussker and A. Schiller, The gluon and ghost propagator and the influence of Gribov copies, Nucl. Phys. Proc. Suppl. 140 (2005) 653 [hep-lat/0409125] [SPIRES].

    Article  ADS  Google Scholar 

  30. A. Sternbeck, E.M. Ilgenfritz, M. Muller-Preussker and A. Schiller, The influence of Gribov copies on the gluon and ghost propagator, AIP Conf. Proc. 756 (2005) 284 [hep-lat/0412011] [SPIRES].

    Article  ADS  Google Scholar 

  31. P. Boucaud et al., The infrared behaviour of the pure Yang-Mills Green functions, hep-ph/0507104 [SPIRES].

  32. I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared, Phys. Lett. B 676 (2009) 69 [arXiv:0901.0736] [SPIRES].

    ADS  Google Scholar 

  33. I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes, PoS(LATTICE 2007)290 [arXiv:0710.1968] [SPIRES].

  34. A. Cucchieri and T. Mendes, What’s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices, PoS(LATTICE 2007)297 [arXiv:0710.0412] [SPIRES].

  35. A. Cucchieri and T. Mendes, Constraints on the IR behavior of the gluon propagator in Yang-Mills theories, Phys. Rev. Lett. 100 (2008) 241601 [arXiv:0712.3517] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Cucchieri and T. Mendes, Landau-gauge propagators in Yang-Mills theories at β = 0: massive solution versus conformal scaling, Phys. Rev. D 81 (2010) 016005 [arXiv:0904.4033] [SPIRES].

    ADS  Google Scholar 

  37. O. Oliveira and P. Bicudo, Running gluon mass from Landau gauge lattice QCD propagator, arXiv:1002.4151 [SPIRES].

  38. D. Dudal, O. Oliveira and N. Vandersickel, Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate A 2 in the Landau gauge, Phys. Rev. D 81 (2010) 074505 [arXiv:1002.2374] [SPIRES].

    ADS  Google Scholar 

  39. V.G. Bornyakov, V.K. Mitrjushkin and M. Muller-Preussker, SU(2) lattice gluon propagator: continuum limit, finite-volume effects and infrared mass scale m IR , Phys. Rev. D 81 (2010) 054503 [arXiv:0912.4475] [SPIRES].

    ADS  Google Scholar 

  40. J.M. Cornwall, Dynamical mass generation in continuum QCD, Phys. Rev. D 26 (1982) 1453 [SPIRES].

    ADS  Google Scholar 

  41. V. Sauli, On the decoupling solution for pinch technique gluon propagator, arXiv:0906.2818 [SPIRES].

  42. K.-I. Kondo, Kugo-Ojima color confinement criterion and Gribov-Zwanziger horizon condition, Phys. Lett. B 678 (2009) 322 [arXiv:0904.4897] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. K.-I. Kondo, Infrared behavior of the ghost propagator in the Landau gauge Yang-Mills theory, Prog. Theor. Phys. 122 (2010) 1455 [arXiv:0907.3249] [SPIRES].

    Article  ADS  Google Scholar 

  44. K.-I. Kondo, Decoupling and scaling solutions in Yang-Mills theory with the Gribov horizon, arXiv:0909.4866 [SPIRES].

  45. D. Dudal, S.P. Sorella, N. Vandersickel and H. Verschelde, Gribov no-pole condition, Zwanziger horizon function, Kugo-Ojima confinement criterion, boundary conditions, BRST breaking and all that, Phys. Rev. D 79 (2009) 121701 [arXiv:0904.0641] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. A.C. Aguilar, D. Binosi and J. Papavassiliou, Indirect determination of the Kugo-Ojima function from lattice data, JHEP 11 (2009) 066 [arXiv:0907.0153] [SPIRES].

    Article  ADS  Google Scholar 

  47. P. Boucaud et al., Gribov’s horizon and the ghost dressing function, Phys. Rev. D 80 (2009) 094501 [arXiv:0909.2615] [SPIRES].

    ADS  Google Scholar 

  48. D. Dudal, S.P. Sorella, N. Vandersickel and H. Verschelde, New features of the gluon and ghost propagator in the infrared region from the Gribov-Zwanziger approach, Phys. Rev. D 77 (2008) 071501 [arXiv:0711.4496] [SPIRES].

    ADS  Google Scholar 

  49. D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel and H. Verschelde, A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results, Phys. Rev. D 78 (2008) 065047 [arXiv:0806.4348] [SPIRES].

    ADS  Google Scholar 

  50. M. Frasca, Infrared gluon and ghost propagators, Phys. Lett. B 670 (2008) 73 [arXiv:0709.2042] [SPIRES].

    ADS  Google Scholar 

  51. M. Tissier and N. Wschebor, Infrared propagators of Yang-Mills theory from perturbation theory, Phys. Rev. D 82 (2010) 101701 [arXiv:1004.1607] [SPIRES].

    ADS  Google Scholar 

  52. M. Lavelle, Gauge invariant effective gluon mass from the operator product expansion, Phys. Rev. D 44 (1991) 26 [SPIRES].

    ADS  Google Scholar 

  53. A.C. Aguilar and J. Papavassiliou, Power-law running of the effective gluon mass, Eur. Phys. J. A 35 (2008) 189 [arXiv:0708.4320] [SPIRES].

    ADS  Google Scholar 

  54. A.C. Aguilar, D. Binosi and J. Papavassiliou, Infrared finite effective charge of QCD, PoS(LC2008)050 [arXiv:0810.2333] [SPIRES].

  55. D. Binosi and J. Papavassiliou, Pinch technique: theory and applications, Phys. Rept. 479 (2009) 1 [arXiv:0909.2536] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. A.C. Aguilar, D. Binosi and J. Papavassiliou, QCD effective charges from lattice data, JHEP 07 (2010) 002 [arXiv:1004.1105] [SPIRES].

    Article  ADS  Google Scholar 

  57. D. Binosi and J. Papavassiliou, Pinch technique and the Batalin-Vilkovisky formalism, Phys. Rev. D 66 (2002) 025024 [hep-ph/0204128] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  58. P.A. Grassi, T. Hurth and M. Steinhauser, Practical algebraic renormalization, Annals Phys. 288 (2001) 197 [hep-ph/9907426] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  60. HPQCD collaboration, C.T.H. Davies et al., Update: accurate determinations of α s from realistic lattice QCD, Phys. Rev. D 78 (2008) 114507 [arXiv:0807.1687] [SPIRES].

    ADS  Google Scholar 

  61. M. Lüscher, R. Sommer, P. Weisz and U. Wolff, A precise determination of the running coupling in the SU(3) Yang-Mills theory, Nucl. Phys. B 413 (1994) 481 [hep-lat/9309005] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rodríguez-Quintero.

Additional information

ArXiv ePrint: 1005.4598

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Quintero, J. On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions. J. High Energ. Phys. 2011, 105 (2011). https://doi.org/10.1007/JHEP01(2011)105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)105

Keywords