Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dark matter and LHC phenomenology in a left-right supersymmetric model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Left-right symmetric extensions of the Minimal Supersymmetric Standard Model can explain neutrino data and have potentially interesting phenomenology beyond that found in minimal SUSY seesaw models. Here we study a SUSY model in which the left-right symmetry is broken by triplets at a high scale, but significantly below the GUT scale. Sparticle spectra in this model differ from the usual constrained MSSM expectations and these changes affect the relic abundance of the lightest neutralino. We discuss changes for the standard stau (and stop) co-annihilation, the Higgs funnel and the focus point regions. The model has potentially large lepton flavour violation in both, left and right, scalar leptons and thus allows, in principle, also for flavoured co-annihilation. We also discuss lepton flavour signals due to violating decays of the second lightest neutralino at the LHC, which can be as large as 20 fb−1 at \( \sqrt {s} = 14{ }TeV \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    ADS  Google Scholar 

  2. T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on the unified theory and the baryon number in the universe, O. Sawada and A. Sugamoto eds., KEK, Japan (1979).

  3. M. Gell-Mann, P Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Niewenhuizen and D. Freedman eds., North Holland, The Netherlands (1979).

  4. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  6. T. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].

    ADS  Google Scholar 

  7. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703-703] [INSPIRE].

    ADS  Google Scholar 

  8. R. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].

    ADS  Google Scholar 

  9. G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].

    ADS  Google Scholar 

  10. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  11. M. Cvetič and J.C. Pati, N = 1 supergravity within the minimal left-right symmetric model, Phys. Lett. B 135 (1984) 57 [INSPIRE].

    ADS  Google Scholar 

  12. C.S. Aulakh, K. Benakli and G. Senjanović, Reconciling supersymmetry and left-right symmetry, Phys. Rev. Lett. 79 (1997) 2188 [hep-ph/9703434] [INSPIRE].

    Article  ADS  Google Scholar 

  13. C.S. Aulakh, A. Melfo, A. Rasin and G. Senjanović, Supersymmetry and large scale left-right symmetry, Phys. Rev. D 58 (1998) 115007 [hep-ph/9712551] [INSPIRE].

    ADS  Google Scholar 

  14. P. Fileviez Perez and S. Spinner, Spontaneous R-parity breaking and left-right symmetry, Phys. Lett. B 673 (2009) 251 [arXiv:0811.3424] [INSPIRE].

    ADS  Google Scholar 

  15. B. Brahmachari, E. Ma and U. Sarkar, Truly minimal left right model of quark and lepton masses, Phys. Rev. Lett. 91 (2003) 011801 [hep-ph/0301041] [INSPIRE].

    Article  ADS  Google Scholar 

  16. F. Siringo, A truly minimal left right symmetric extension of the standard model, Eur. Phys. J. C 32 (2004) 555 [hep-ph/0307320] [INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Babu, B. Dutta and R. Mohapatra, Partial Yukawa unification and a supersymmetric origin of flavor mixing, Phys. Rev. D 60 (1999) 095004 [hep-ph/9812421] [INSPIRE].

    ADS  Google Scholar 

  18. M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: An account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, U.S.A. (2004) [INSPIRE].

    Google Scholar 

  19. F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [INSPIRE].

    Article  ADS  Google Scholar 

  20. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

    Article  ADS  Google Scholar 

  21. SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

    Article  ADS  Google Scholar 

  22. KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B 357 (1995) 579 [hep-ph/9501407] [INSPIRE].

    ADS  Google Scholar 

  24. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].

    ADS  Google Scholar 

  25. J. Esteves et al., LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM, JHEP 12 (2010) 077 [arXiv:1011.0348] [INSPIRE].

    Article  ADS  Google Scholar 

  26. Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Hirsch, S. Kaneko and W. Porod, Supersymmetric seesaw type. II. LHC and lepton flavour violating phenomenology, Phys. Rev. D 78 (2008) 093004 [arXiv:0806.3361] [INSPIRE].

    ADS  Google Scholar 

  28. M. Hirsch, L. Reichert and W. Porod, Supersymmetric mass spectra and the seesaw scale, JHEP 05 (2011) 086 [arXiv:1101.2140] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Esteves, J. Romao, M. Hirsch, F. Staub and W. Porod, Supersymmetric type-III seesaw: lepton flavour violating decays and dark matter, Phys. Rev. D 83 (2011) 013003 [arXiv:1010.6000] [INSPIRE].

    ADS  Google Scholar 

  30. M.R. Buckley and H. Murayama, How can we test seesaw experimentally?, Phys. Rev. Lett. 97 (2006) 231801 [hep-ph/0606088] [INSPIRE].

    Article  ADS  Google Scholar 

  31. V. De Romeri, M. Hirsch and M. Malinsky, Soft masses in SUSY SO(10) GUTs with low intermediate scales, Phys. Rev. D 84 (2011) 053012 [arXiv:1107.3412] [INSPIRE].

    ADS  Google Scholar 

  32. J. Esteves, S. Kaneko, J. Romao, M. Hirsch and W. Porod, Dark matter in minimal supergravity with type-II seesaw, Phys. Rev. D 80 (2009) 095003 [arXiv:0907.5090] [INSPIRE].

    ADS  Google Scholar 

  33. C. Biggio and L. Calibbi, Phenomenology of SUSY SU(5) with type-I+III seesaw, JHEP 10 (2010) 037 [arXiv:1007.3750] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Drees and J.M. Kim, Neutralino dark matter in an SO(10) model with two-step intermediate scale symmetry breaking, JHEP 12 (2008) 095 [arXiv:0810.1875] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Drees and M.M. Nojiri, The Neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].

    ADS  Google Scholar 

  36. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  37. D. Choudhury, R. Garani and S.K. Vempati, Flavored co-annihilations, arXiv:1104.4467 [INSPIRE].

  38. R. Kuchimanchi and R. Mohapatra, No parity violation without R-parity violation, Phys. Rev. D 48 (1993) 4352 [hep-ph/9306290] [INSPIRE].

    ADS  Google Scholar 

  39. R. Kuchimanchi and R. Mohapatra, Upper bound on the W (R) mass in automatically R conserving SUSY models, Phys. Rev. Lett. 75 (1995) 3989 [hep-ph/9509256] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J. Kopp, M. Lindner, V. Niro and T.E. Underwood, On the consistency of perturbativity and gauge coupling unification, Phys. Rev. D 81 (2010) 025008 [arXiv:0909.2653] [INSPIRE].

    ADS  Google Scholar 

  41. S. Weinberg, Effective gauge theories, Phys. Lett. B 91 (1980) 51 [INSPIRE].

    ADS  Google Scholar 

  42. B.A. Ovrut and H.J. Schnitzer, Gauge theories with minimal subtraction and the decoupling theorem, Nucl. Phys. B 179 (1981) 381 [INSPIRE].

    Article  ADS  Google Scholar 

  43. L.J. Hall, Grand unification of effective gauge theories, Nucl. Phys. B 178 (1981) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  44. S.K. Majee, M.K. Parida, A. Raychaudhuri and U. Sarkar, Low intermediate scales for leptogenesis in SUSY SO(10) GUTs, Phys. Rev. D 75 (2007) 075003 [hep-ph/0701109] [INSPIRE].

    ADS  Google Scholar 

  45. D. Borah and U.A. Yajnik, Supersymmetric left-right models with gauge coupling unification and fermion mass universality, Phys. Rev. D 83 (2011) 095004 [arXiv:1010.6289] [INSPIRE].

    ADS  Google Scholar 

  46. B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    ADS  Google Scholar 

  47. M. Malinsky, J. Romao and J. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].

    Article  ADS  Google Scholar 

  48. R.M. Fonseca, M. Malinsky, W. Porod and F. Staub, Running soft parameters in SUSY models with multiple U(1) gauge factors, Nucl. Phys. B 854 (2012) 28 [arXiv:1107.2670] [INSPIRE].

    Article  ADS  Google Scholar 

  49. F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].

  50. F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].

    Article  ADS  Google Scholar 

  53. W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, arXiv:1104.1573 [INSPIRE].

  54. F. Staub, T. Ohl, W. Porod and C. Speckner, A tool box for implementing supersymmetric models, arXiv:1109.5147 [INSPIRE].

  55. CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].

    ADS  Google Scholar 

  56. ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7{ }TeV \) pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].

    Article  ADS  Google Scholar 

  57. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7{ }TeV \) proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].

    ADS  Google Scholar 

  58. CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].

    Article  ADS  Google Scholar 

  59. MEG: search for μ→eγ down to 10−14 branching ratio, proposal to OSI, documents and status at http://meg.web.psi.ch/.

  60. MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ + → e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].

    Article  ADS  Google Scholar 

  61. W. Chao, Neutrino masses and lepton-flavor-violating τ decays in the supersymmetric left-right model, Chin. Phys. C 35 (2011) 214 [arXiv:0705.4351] [INSPIRE].

    ADS  Google Scholar 

  62. Y. Okada, K.-i. Okumura and Y. Shimizu, M u → eγ and μ → 3e processes with polarized muons and supersymmetric grand unified theories, Phys. Rev. D 61 (2000) 094001 [hep-ph/9906446] [INSPIRE].

    ADS  Google Scholar 

  63. J. Hisano, M. Nagai, P. Paradisi and Y. Shimizu, Waiting for μ → eγ from the MEG experiment, JHEP 12 (2009) 030 [arXiv:0904.2080] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].

    ADS  Google Scholar 

  65. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  66. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. 37 (2010) 075021.

    Article  ADS  Google Scholar 

  67. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  68. J.R. Ellis, T. Falk and K.A. Olive, Neutralino-stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].

    ADS  Google Scholar 

  69. C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE].

    ADS  Google Scholar 

  70. J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of neutralino stop coannihilation in the CMSSM, Astropart. Phys. 18 (2003) 395 [hep-ph/0112113] [INSPIRE].

    Article  ADS  Google Scholar 

  71. J. Edsjo, M. Schelke, P. Ullio and P. Gondolo, Accurate relic densities with neutralino, chargino and sfermion coannihilations in mSUGRA, JCAP 04 (2003) 001 [hep-ph/0301106] [INSPIRE].

    Article  ADS  Google Scholar 

  72. J.L. Feng, K.T. Matchev and F. Wilczek, Neutralino dark matter in focus point supersymmetry, Phys. Lett. B 482 (2000) 388 [hep-ph/0004043] [INSPIRE].

    ADS  Google Scholar 

  73. J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].

    ADS  Google Scholar 

  74. J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].

    Article  ADS  Google Scholar 

  75. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  76. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  77. M. Hirsch, J. Valle, W. Porod, J. Romao and A. Villanova del Moral, Probing minimal supergravity in type-I seesaw with lepton flavour violation at the LHC, Phys. Rev. D 78 (2008) 013006 [arXiv:0804.4072] [INSPIRE].

    ADS  Google Scholar 

  78. F. Staub, RGEs for supersymmetric left-right model, SARAH output, http://theorie.physik.uni-wuerzburg.de/˜fnstaub/Supplementary/Omega2.pdf

  79. B. Allanach, J. Conlon and C. Lester, Measuring smuon-selectron mass splitting at the CERN LHC and patterns of supersymmetry breaking, Phys. Rev. D 77 (2008) 076006 [arXiv:0801.3666] [INSPIRE].

    ADS  Google Scholar 

  80. A.J. Buras, L. Calibbi and P. Paradisi, Slepton mass-splittings as a signal of LFV at the LHC, JHEP 06 (2010) 042 [arXiv:0912.1309] [INSPIRE].

    Article  ADS  Google Scholar 

  81. A. Abada, A. Figueiredo, J. Romao and A. Teixeira, Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw, JHEP 10 (2010) 104 [arXiv:1007.4833] [INSPIRE].

    Article  ADS  Google Scholar 

  82. B. O’Leary, LHC-FASER light, https://github.com/benoleary/LHC-FASER light.

  83. W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  84. N. Arkani-Hamed, H.-C. Cheng, J.L. Feng and L.J. Hall, Probing lepton flavor violation at future colliders, Phys. Rev. Lett. 77 (1996) 1937 [hep-ph/9603431] [INSPIRE].

    Article  ADS  Google Scholar 

  85. N. Arkani-Hamed, J.L. Feng, L.J. Hall and H.-C. Cheng, CP violation from slepton oscillations at the LHC and NLC, Nucl. Phys. B 505 (1997) 3 [hep-ph/9704205] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Staub.

Additional information

ArXiv ePrint: 1109.6478

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteves, J.N., Romao, J.C., Hirsch, M. et al. Dark matter and LHC phenomenology in a left-right supersymmetric model. J. High Energ. Phys. 2012, 95 (2012). https://doi.org/10.1007/JHEP01(2012)095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)095

Keywords